【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線(xiàn),OC交⊙O于點(diǎn)D,BD的延長(zhǎng)線(xiàn)交AC于點(diǎn)E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
【答案】
(1)
證明:∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
∵AC為⊙O的切線(xiàn),
∴OA⊥AC,
∴∠OAD+∠CAD=90°,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠1=∠BDO,
∴∠1=∠CAD;
(2)
解:∵∠1=∠CAD,∠C=∠C,
∴△CAD∽△CDE,
∴CD:CA=CE:CD,
∴CD2=CACE,
∵AE=EC=2,
∴AC=AE+EC=4,
∴CD=2 ,
設(shè)⊙O的半徑為x,則OA=OD=x,
則Rt△AOC中,OA2+AC2=OC2,
∴x2+42=(2 +x)2,
解得:x= .
∴⊙O的半徑為
【解析】(1)由AB為⊙O的直徑,AC為⊙O的切線(xiàn),易證得∠CAD=∠BDO,繼而證得結(jié)論;(2)由(1)易證得△CAD∽△CDE,然后由相似三角形的對(duì)應(yīng)邊成比例,求得CD的長(zhǎng),再利用勾股定理,求得答案.此題考查了切線(xiàn)的性質(zhì)、圓周角定理以及相似三角形的判定與性質(zhì).注意證得△CAD∽△CDE是解此題的關(guān)鍵.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓周角定理(頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半),還要掌握切線(xiàn)的性質(zhì)定理(切線(xiàn)的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)2、經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心3、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD 中,AB=AD,點(diǎn)B關(guān)于AC的對(duì)稱(chēng)點(diǎn)B′恰好落在CD上,若∠BAD=,則∠ACB的度數(shù)為( 。
A. α B. 90°-α C. 45° D. α-45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC與△AEG面積之間的關(guān)系,并說(shuō)明理由。
(2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=3,BC=5,以點(diǎn)B為圓心,以任意長(zhǎng)為半徑作弧,分別交BA、BC于點(diǎn)P、Q,再分別以P、Q為圓心,以大于 PQ的長(zhǎng)為半徑作弧,兩弧在∠ABC內(nèi)交于點(diǎn)M,連接BM并延長(zhǎng)交AD于點(diǎn)E,則DE的長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30o,點(diǎn)A1、A2、A3 在射線(xiàn)ON上,點(diǎn)B1、B2、B3…..在射線(xiàn)OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長(zhǎng)為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,D,E,F分別為AB,BC,CA上的點(diǎn),且,.
(1)求證:≌;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△ECD都是等邊三角形
(1)如圖1,若B、C、D三點(diǎn)在一條直線(xiàn)上,求證:BE=AD;
(2)保持△ABC不動(dòng),將△ECD繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使∠ACE=90°(如圖2),BC與DE有怎樣的位置關(guān)系?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com