分析 首先利用勾股定理得出DC的長(zhǎng),再利用相似三角形的性質(zhì)得出△ACD∽△CBD,進(jìn)而得出BC的長(zhǎng)即可得出答案.
解答 解:由題意可得:DC=$\sqrt{A{C}^{2}-A{D}^{2}}$=2$\sqrt{5}$(cm),
∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,
∴∠ACD=∠B,
又∵∠ADC=∠CDB=90°,
∴△ACD∽△CBD,
∴$\frac{AC}{BC}$=$\frac{DA}{DC}$,
則$\frac{6}{BC}$=$\frac{4}{2\sqrt{5}}$,
解得:BC=3$\sqrt{5}$,
∴BD=$\sqrt{B{C}^{2}-D{C}^{2}}$=$\sqrt{(3\sqrt{5})^{2}-(2\sqrt{5})^{2}}$=5(cm),
故AB=AD+BD=9cm,
答:AB的長(zhǎng)為9cm,BC的長(zhǎng)為3$\sqrt{5}$cm.
點(diǎn)評(píng) 此題主要考查了勾股定理以及相似三角形的性質(zhì),得出BC的長(zhǎng)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.2 | B. | 0.5 | C. | 0.6 | D. | 0.8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com