【題目】提出問題:當(dāng)x0時(shí)如何求函數(shù)y=x+的最大值或最小值?

分析問題:前面我們剛剛學(xué)過二次函數(shù)的相關(guān)知識(shí),知道求二次函數(shù)的最值時(shí),我們可以利用它的圖象進(jìn)行猜想最值,或利用配方可以求出它的最值.

例如我們求函數(shù)y=x﹣2x0)的最值時(shí),就可以仿照二次函數(shù)利用配方求最值的方法解決問題;y=x﹣2=2﹣2﹣2+1﹣1=﹣12﹣1即當(dāng)x=1時(shí),y有最小值為﹣1

解決問題

借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=x+x0)的最大(。┲担

1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)y=x+x0)的圖象:

x

1

2

3

4

y

2)觀察猜想:觀察該函數(shù)的圖象,猜想

當(dāng)x= 時(shí),函數(shù)y=x+x0)有最 值(填),是

3)推理論證:利用上述例題,請你嘗試通過配方法求函數(shù)y=x+x0)的最大(。┲担宰C明你的猜想.知識(shí)能力運(yùn)用:直接寫出函數(shù)y=﹣2x﹣x0)當(dāng)x= 時(shí),該函數(shù)有最 值(填),是

【答案】143;22;2;34;畫圖見解析;21,小,2;3,大,﹣2

【解析】

試題分析:1)由x的值計(jì)算出y的值,填表即可;用描點(diǎn)法畫出圖象即可;

2)用配方法得出y=x+=2+2,即可得出結(jié)果;

3)用配方法得出y=﹣2x﹣=﹣2﹣2,即可得出結(jié)果.

解:(1)當(dāng)x=時(shí),y=x+=+4=4

當(dāng)x=時(shí),y=x+=+3=3

當(dāng)x=時(shí),y=x+=+2=2

當(dāng)x=1時(shí),y=x+=1+1=2

當(dāng)x=2時(shí),y=x+=2+=2

當(dāng)x=3時(shí),y=x+=3+=3;

當(dāng)x=4時(shí),y=x+=4+=4;填表如下:

函數(shù)圖象如圖所示:

2y=x+=2+2=2+2

當(dāng)x=1時(shí),函數(shù)y=x+x0)有最小值,最小值為2;

故答案為:1,小,2

3y=﹣2x﹣=﹣2x+=﹣2﹣2,

當(dāng)=1,即x=時(shí),函數(shù)y=﹣2x﹣x0)有最大值,最大值為﹣2;

故答案為:,大,﹣2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.a2a3=a5
B.(ab)2=ab2
C.(a32=a9
D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,是假命題的是( )
A.平行四邊形的兩組對邊分別相等
B.兩組對邊分別相等的四邊形是平行四邊形
C.矩形的對角線相等
D.對角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.a3+a4=a7
B.2a3a4=2a7
C.(2a43=8a7
D.a8÷a2=a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1)(x+2y)(x24y2)(x2y

2999×1001

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球的平均半徑約為6 371 000米,該數(shù)字用科學(xué)記數(shù)法可表示為( )
A.0.6371×107
B.6.371×106
C.6.371×107
D.6.371×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若“”是新規(guī)定的某種運(yùn)算符號(hào),設(shè)ab=2a﹣3b,則(x+y)△(x﹣y)運(yùn)算后的結(jié)果為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M表示的有理數(shù)是-1,點(diǎn)M在數(shù)軸上移動(dòng)5個(gè)單位長度后得到點(diǎn)N,則點(diǎn)N表示的有理數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.

(1)求證:ABD是等腰三角形;

(2)若A=40°,求DBC的度數(shù);

(3)若AE=6,CBD的周長為20,求ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案