【題目】已知△ABC,DAB邊上任意一點(diǎn),DF∥ACBCF,AE∥BC,∠CDE=ABC=∠ACB=α,

(1)如圖1所示當(dāng)α=60°時(shí),求證:△DCE是等邊三角形

(2)如圖2所示,當(dāng)α=45°時(shí),求證=;

(3)如圖3所示當(dāng)α為任意銳角時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段CEDE的數(shù)量關(guān)系_____.

【答案】1

【解析】試題1)證明△CFD≌△DAE即可解決問(wèn)題.

2)如圖2,FGACG.只要證明△CFD∽△DAE推出=,再證明CF=AD即可.

3)證明EC=ED即可解決問(wèn)題.

試題解析:(1)證明如圖1中,∵∠ABC=ACB=60°,∴△ABC是等邊三角形,BC=BADFAC,∴∠BFD=BCA=60°,BDF=BAC=60°,∴△BDF是等邊三角形,BF=BD,CF=ADCFD=120°.AEBC,∴∠B+∠DAE=180°,∴∠DAE=CFD=120°.∵∠CDA=B+∠BCD=CDE+∠ADE∵∠CDE=B=60°,∴∠FCD=ADE,∴△CFD≌△DAEDC=DE∵∠CDE=60°,∴△CDE是等邊三角形.

2)證明如圖2FGACG∵∠B=ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形DFAC∴∠BDF=BAC=90°,∴∠BFD=45°,DFC=135°.AEBC∴∠BAE+∠B=180°,∴∠DFC=DAE=135°.∵∠CDA=B+∠BCD=CDE+∠ADE∵∠CDE=B=45°,∴∠FCD=ADE,∴△CFD∽△DAE,=∵四邊形ADFG是矩形,FC=FG,FG=ADCF=AD,=

3)解如圖3,設(shè)ACDE交于點(diǎn)O

AEBC,∴∠EAO=ACB∵∠CDE=ACB∴∠CDO=OAE∵∠COD=EOA,∴△COD∽△EOA,=,=∵∠COE=DOA,∴△COE∽△DOA∴∠CEO=DAO∵∠CED+∠CDE+∠DCE=180°,BAC+∠B+∠ACB=180°.∵∠CDE=B=ACB,∴∠EDC=ECDEC=ED,=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=-x+1和直線(xiàn)y=x-2相交于點(diǎn)P,分別與y軸交于A、B兩點(diǎn).

1)求點(diǎn)P的坐標(biāo);

2)求△ABP的面積;

3MN分別是直線(xiàn)y=-x+1y=x-2上的兩個(gè)動(dòng)點(diǎn),且MNy軸,若MN=5直接寫(xiě)出M、N兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB分別與兩坐標(biāo)軸交于點(diǎn)A(6,0),B(0,12),點(diǎn)C的坐標(biāo)為(3,0)

(1)求直線(xiàn)AB的解析式;

(2)在線(xiàn)段AB上有一動(dòng)點(diǎn)P.

過(guò)點(diǎn)P分別作x,y軸的垂線(xiàn),垂足分別為點(diǎn)E,F(xiàn),若矩形OEPF的面積為16,求點(diǎn)P的坐標(biāo).

連結(jié)CP,是否存在點(diǎn)P,使ACP與AOB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自駕游是當(dāng)今社會(huì)一種重要的旅游方式,五一放假期間小明一家人自駕去靈山游玩,下圖描述了小明爸爸駕駛的汽車(chē)在一段時(shí)間內(nèi)路程s(千米)與時(shí)間t(小時(shí))的函數(shù)關(guān)系,下列說(shuō)法中正確的是( )

A. 汽車(chē)在0~1小時(shí)的速度是60千米/時(shí); B. 汽車(chē)在2~3小時(shí)的速度比0~0.5小時(shí)的速度快;

C. 汽車(chē)從0.5小時(shí)到1.5小時(shí)的速度是80千米/時(shí); D. 汽車(chē)行駛的平均速度為60千米/時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過(guò)程,請(qǐng)補(bǔ)充完整:在函數(shù)y|x|2中,自變量x可以是任意實(shí)數(shù);

Ⅰ如表是yx的幾組對(duì)應(yīng)值.

y

3

2

1

0

1

2

3

x

1

0

1

2

1

0

m

①m   

An,8),B10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n   

Ⅱ如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:

該函數(shù)的最小值為   ;

該函數(shù)的另一條性質(zhì)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA1m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(0,2)、(-1,0)、(2,0.

1)求直線(xiàn)AB的函數(shù)表達(dá)式;

2)直線(xiàn)AB上有一點(diǎn)P,使得△PBC的面積等于9,求點(diǎn)P的坐標(biāo);

3)設(shè)點(diǎn)DA、B、C 點(diǎn)構(gòu)成平行四邊形,直接寫(xiě)出所有符合條件的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2 E3E4B3……按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3……在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為l,∠B1C1O= 60°, B1C1∥B2C2∥B3C3……,則正方形A2017B2017 C2017 D2017的邊長(zhǎng)是( )

A. 2016 B. 2017 C. 2016 D. 2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.

(1)求這條拋物線(xiàn)的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)點(diǎn)D是拋物線(xiàn)上的一動(dòng)點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案