【題目】如圖,直線y=-x+1和直線y=x-2相交于點P,分別與y軸交于A、B兩點.
(1)求點P的坐標(biāo);
(2)求△ABP的面積;
(3)M、N分別是直線y=-x+1和y=x-2上的兩個動點,且MN∥y軸,若MN=5,直接寫出M、N兩點的坐標(biāo).
【答案】(1)P點坐標(biāo)為;(2) ;(3)M(4,-3) ,N(4,2) 或M(-1,2) ,N(-1,-3)
【解析】
(1)通過兩條直線方程聯(lián)立成一個方程組,解方程組即可得到點P的坐標(biāo);
(2)利用三角形面積公式解題即可;
(3)分別設(shè)出M,N的坐標(biāo),利用MN=5建立方程求解即可.
解:(1)∵直線y=-x+1和直線y=x-2相交于點P
∴ 解之得:
∴P點坐標(biāo)為:
(2)過P點作PD⊥y軸于點D
∵直線y=-x+1和直線y=x-2分別交y軸于A、B兩點
當(dāng)x=0時,
∴A(0,1),B(0,-2)
∴
∴
由(1)知P
∴
(3)∵M、N分別是直線y=-x+1和y=x-2上的兩個動點,MN∥y軸,
∴M,N的橫坐標(biāo)相同
設(shè)
∵MN=5,
解得或
當(dāng)時,,此時M(-1,2),N(-1,-3)
當(dāng)時,,此時M(4,-3),N(4,2)
綜上所述,M(4,-3) ,N(4,2) 或M(-1,2) ,N(-1,-3)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,今年2月20日舉行了襄陽市首屆中小學(xué)生經(jīng)典誦讀大賽決賽. 某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開展校級“經(jīng)典誦讀”比賽活動,比賽成績評定為A,B,C,D,E五個等級,該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:
(1)該校七(1)班共有 名學(xué)生;扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于 度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若A等級的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費用,提高車票價格;建議(Ⅱ)不改變車票價格,減少支出費用. 下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
④ ③ ② ①
A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上.
(1)如圖1,當(dāng)EP⊥BC時,求CN的長;
(2) 如圖2,當(dāng)EP⊥AC時,求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、E分別在△ACD的邊AB和AC上,已知DE∥BC,DE=DB.
(1)請用直尺和圓規(guī)在圖中畫出點D和點E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;
(2)若AB=7,BC=3,請求出DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某市在道路改造過程中,需要鋪設(shè)一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設(shè)20米,且甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同.
(1)甲、乙工程隊每天各能鋪設(shè)多少米?
(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量(以百米為單位)的方案有幾種?請你幫助設(shè)計出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如圖1所示,當(dāng)α=60°時,求證:△DCE是等邊三角形;
(2)如圖2所示,當(dāng)α=45°時,求證:=;
(3)如圖3所示,當(dāng)α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com