【題目】如圖,AB⊙O的弦,過點OOC⊥OAOC交于ABP,且CP=CB

1)求證:BC⊙O的切線;

2)已知∠BAO=25°,點Q是弧AmB上的一點.

①求∠AQB的度數(shù);

②若OA=18,求弧AmB的長.

【答案】1)見解析;(2)①∠AQB=65°,②lAmB=23π.

【解析】

(1)連接OB,根據(jù)等腰三角形的性質得到∠OAB=∠OBA∠CPB=∠CBP,再根據(jù)∠PAO+∠APO=90°,繼而得出∠OBC=90°,問題得證;

(2)①根據(jù)等腰三角形的性質可得∠ABO=25°,再根據(jù)三角形內角和定理可求得∠AOB的度數(shù),繼而根據(jù)圓周角定理即可求得答案;

②根據(jù)弧長公式進行計算即可得.

(1)連接OB,

∵CP=CB,

∴∠CPB=∠CBP,

∵OA⊥OC

∴∠AOC=90°,

∵OA=OB,

∴∠OAB=∠OBA,

∵∠PAO+∠APO=90°

∴∠ABO+∠CBP=90°,

∴∠OBC=90°

∴BC⊙O的切線;

(2)①∵∠BAO=25° OA=OB,

∴∠OBA=∠BAO=25°,

∴∠AOB=180°-BAO-OBA=130°,

∴∠AQB=AOB=65°

②∵∠AOB=130°,OB=18,

lAmB==23π.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】便民水泥代銷點銷售某種水泥,每噸進價為250元,如果每噸銷售價定為290元時,平均每天可售出16噸.

1)若代銷點采取降低促銷的方式,試建立每噸的銷售利潤y(元)與每噸降低x(元)之間的函數(shù)關系式;

2)若每噸售價每降低5元,則平均每天能多售出4噸,問:每噸水泥的實際售價定為多少元時,每天的銷售利潤平均可達720元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx3x軸交于AB兩點,與y軸交于點C,且OBOC3OA,求拋物線的解析式( 。

A.yx22x3B.yx22x+3C.yx22x4D.yx22x5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的邊OAOC分別在x軸、y軸上,點B在第一象限,點B的坐標為(12,6),反比例函數(shù)的圖象分別交邊BC、AB于點D、E,連結DE,ΔDEF與ΔDEB關于直線DE對稱.當點F正好落在邊OA上時,則k的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABAC,⊙O為△ABC的外接圓,AF為⊙O的直徑,四邊形ABCD是平行四邊形.

1)求證:AD是⊙O的切線;

2)若∠BAC45°,AF2,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,AEBC,垂足為點E,AFCD,垂足為點F

1)如果AB=AD,求證:EFBD

2)如果EFBD,求證:AB=AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生的學習興趣如何是每位教師非常關注的問題.為此,某校教師對該校部分學生的學習興趣進行了一次抽樣調查(把學生的學習興趣分為三個層次,A層次:很感興趣;B層次:較感興趣;C層次:不感興趣);并將調查結果繪制成了圖①和圖②的統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調查中,共調查了 名學生;

2)將圖①補充完整;

3)求圖②中C層次所在扇形的圓心角的度數(shù);

4)根據(jù)抽樣調查的結果,請你估計該校1200名學生中大約有多少名學生對學習感興趣(包括A層次和B層次).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cmBC、EF平行于地面AD且到地面AD的距離分別為40cm8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質及其厚度等暫忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一L型紙片是由5個邊長都是10cm的正方形拼接而成,過點I的直線分別與AEJN交于點P,Q,且L型紙片被直線PQ分成面積相等的上下兩部分,將該紙片沿BG,CH,DIIJ折成一個無蓋的正方體盒子后,點PQ之間的距離為_____cm

查看答案和解析>>

同步練習冊答案