【題目】如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)、如圖a,求證:△BCP≌△DCQ;
(2)、如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.
【答案】(1)證明見試題解析;(2)①證明見試題解析;②△DEP為等腰直角三角形.
【解析】試題分析:(1)、根據(jù)正方形性質(zhì)得出BC=DC,根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出CP=CQ以及∠PCB=∠QCD,從而得出三角形全等;(2)、①、根據(jù)全等得出∠PBC=∠QBC,設(shè)BE和CD交點為M,根據(jù)對頂角得出∠DME=∠BMC,從而說明BE⊥QD;②、根據(jù)等邊三角形的性質(zhì)得出PB=PC=BC,∠PBC=∠BPC=∠PCB=60°,則∠PCD=30°,根據(jù)BC=DC,CP=CQ得出△PCD為等腰三角形,然后根據(jù)△DCQ為等邊三角形,從而得出∠DEP=90°,從而得出答案.
試題解析:(1)、∵四邊形ABCD是正方形,∴BC=DC
又∵將線段CP繞點C順時針旋90°得到線段CQ,∴CP=CQ,∠PCQ=90°∴∠PCD+∠QCD=90°
又∵∠PCB+∠PCD=90° ∴∠PCB=∠QCD
在△BCP和△DCQ中 BC=DC,CP=CQ,∠PCB=∠QCD ∴△BCP≌△DCQ
(2)、①∵△BCP≌△DCQ ∴∠PBC=∠QBC
設(shè)BE和CD交點為M ∴∠DME=∠BMC ∠MED=∠MCB=90°∴BE⊥QD
②△DEP為等腰直角三角形,
∵△BOP為等邊三角形 ∴PB=PC=BC ∠PBC=∠BPC=∠PCB=60°
∴∠PCD=90°-60°=30°∴∠DCQ=90°-60°=30°
又∵BC=DC CP=CQ∴PC=DC DC=CQ ∴△PCD是等腰三角形
△DCQ是等邊三角形 ∴∠CPD=∠CDP=75°∠CDQ=60°∴∠EPD=180°-15°-60°=45°
∠EDP=180°-75°-60°="45" °∴∠EPD=∠EDP PE=DE ∴∠DEP=180°-45°-45°=90°
∴△DEP是等腰直角三形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
①;② 方程的兩個根是;③ ;④當(dāng)時, 的取值范圍是;⑤ 當(dāng)時, 隨增大而增大;其中結(jié)論正確有____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:因為一個非負(fù)數(shù)的絕對值等于它本身,負(fù)數(shù)的絕對值等于它的相反數(shù),所以當(dāng)a≥0時|a|=a,當(dāng)a<0時|a|=﹣a,根據(jù)以上閱讀完成:
(1)|3.14﹣π|= .
(2)計算:| ﹣1|+| ﹣ |+| ﹣ |…+| ﹣ |+| + |.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)生了求救信號,一艘在港口正東方向B處的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里/時的速度前往救援,求海警船到達(dá)事故船C處所需的大約時間.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,⊙O的半徑為3, 的長為π.
(1)直線CD與⊙O相切嗎?說明理由。
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com