【題目】如圖,△ABC中,AB=AC,∠BAC=54°,點D為AB中點,且OD⊥AB,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,則∠OEC為 度.
【答案】108
【解析】
試題分析:連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得OA=OB,根據(jù)等邊對等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對等角求出∠COE,再利用三角形的內(nèi)角和定理列式計算即可得解.如圖,連接OB、OC,∵∠BAC=54°,AO為∠BAC的平分線, ∴∠BAO=∠BAC=×54°=27°,
又∵AB=AC, ∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,
∵DO是AB的垂直平分線, ∴OA=OB, ∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°, ∵AO為∠BAC的平分線,AB=AC,
∴△AOB≌△AOC(SAS), ∴OB=OC, ∴點O在BC的垂直平分線上,
又∵DO是AB的垂直平分線, ∴點O是△ABC的外心, ∴∠OCB=∠OBC=36°,
∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合, ∴OE=CE,∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】20位同學(xué)在植樹節(jié)這天共種了52棵樹苗,其中男生每人種3棵,女生每人種2棵.則其中男生人數(shù)比女生人數(shù)多( )
A.11人
B.12人
C.3人
D.4人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖所示),
操作一:(1)折疊紙面,使1表示的點與1表示的點重合,回答一下問題:
①2表示的點與______表示的點重合;②π表示的點與______表示的點重合。
操作二:(2)折疊紙面,使1表示的點與3表示的點重合,回答以下問題:
①5表示的點與數(shù)_____表示的點重合;②表示的點與數(shù)_____表示的點重合
操作三:(3)已知在數(shù)軸上點A表示的數(shù)是a,點A移動5個單位,此時點A表示的數(shù)和a是互為相反數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1在上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在線段BA、AB的延長線上,且AD=AC,BE=BC,則∠DCE= ;
(2)如圖(2),在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在邊AB上,且AD=AC,BE=BC,求∠DCE的度數(shù);
(3)在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在直線AB上,且AD=AC,BE=BC,則∠求DCE的度數(shù)(直接寫出答案);
(4)如圖(3),在△ABC中,AB=14,AC=15,BC=13,點D、E在直線AB上,且AD=AC,BE=BC.請根據(jù)題意把圖形補畫完整,并在圖形的下方直接寫出△DCE的面積.(如果有多種情況,圖形不夠用請自己畫出,各種情況用一個圖形單獨表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P為等邊△ABC內(nèi)的一點,PA=10,PB=6,PC=8,將△ABP繞點B順時針旋轉(zhuǎn)60°到△CBP′位置.
(1)判斷△BPP′的形狀,并說明理由;
(2)求∠BPC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com