【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點(diǎn)P為AD邊上的一點(diǎn),AP= ,請利用“兩點(diǎn)之間線段最短”這一原理,在線段AC上畫出一點(diǎn)M,使MP+MD最小,并直接寫出最小值的平方為_____________.
【答案】 36 17
【解析】試題分析:(1)由直角三角形兩直角邊的平方和等于斜邊的平方變形計(jì)算得出;
(2)
試題解析:
(1)BC2=AB2-AC2=100-64=36,
(2)如圖所示:作點(diǎn)P關(guān)于AC的對稱點(diǎn)P’,連接P’D交AC于點(diǎn)M,則點(diǎn)M即為所求,此時(shí)有MP+MD最小值,即為P’D的長度.
過點(diǎn)P’作P’E CD于點(diǎn)E,
∵正方形ABCD的邊長為4,點(diǎn)P為AD邊上的一點(diǎn),AP=
∴P’E=4,DE=A P’=AP=1
∴DP’2=DE2+P’E2=16+1=17.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點(diǎn)D、E.
(1)若∠A = 40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長為13,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解參加某運(yùn)動會的2 000名運(yùn)動員的年齡情況,從中抽查了100名運(yùn)動員的年齡,就這個(gè)問題來說,下面說法正確的是( )
A.2 000名運(yùn)動員是總體
B.每個(gè)運(yùn)動員是個(gè)體
C.100名運(yùn)動員是抽取的一個(gè)樣本
D.100名運(yùn)動員的年齡是抽取的一個(gè)樣本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若線段AB=4,AB∥x軸,點(diǎn)A的坐標(biāo)是(2,3),則點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到Rt△ADE的位置,點(diǎn)E在斜邊AB上,連結(jié)BD,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)如圖1,若點(diǎn)F與點(diǎn)A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,①如圖2,當(dāng)點(diǎn)F在線段CA的延長線上時(shí),判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)點(diǎn)F在線段CA上時(shí),設(shè)BE=x,請用含x的代數(shù)式表示線段AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證: .(這個(gè)比值叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個(gè)等腰三角形就叫做黃金三角形.請你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個(gè)黃金三角形ABC.
(注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對作圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,O是對角線的交點(diǎn),過O作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,
(1)求證:OE=OF
(2)求 EF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,點(diǎn)D為AB中點(diǎn),且OD⊥AB,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com