【題目】我國古代《易經》一書中記載,遠古時期,人們通過在繩子上打結來記錄數(shù)量,即“結繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是( )

A.84
B.336
C.510
D.1326

【答案】C
【解析】解:1×73+3×72+2×7+6=510,
故選C.
類比于現(xiàn)在我們的十進制“滿十進一”,可以表示滿七進一的數(shù)為:千位上的數(shù)×73+百位上的數(shù)×72+十位上的數(shù)×7+個位上的數(shù).本題是以古代“結繩計數(shù)”為背景,按滿七進一計算自孩子出生后的天數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學列式計算;本題題型新穎,一方面讓學生了解了古代的數(shù)學知識,另一方面也考查了學生的思維能力.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y= (k≠0)的圖象經過(3,﹣1),則當1<y<3時,自變量x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是(
A.一組對邊相等,另一組對邊平行的四邊形一定是平行四邊形
B.對角線相等的四邊形一定是矩形
C.兩條對角線互相垂直的四邊形一定是菱形
D.兩條對角線相等且互相垂直平分的四邊形一定是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E是平行四邊形ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F.

(1)求證:△ABE≌△FCE;
(2)連接AC、BF,若AE= BC,求證:四邊形ABFC為矩形;
(3)在(2)條件下,直接寫出當△ABC再滿足時,四邊形ABFC為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】回答下面的例題:
解方程:x2﹣|x|﹣2=0.
解:①x≥0時,原方程化為x2﹣x﹣2=0,解得x1=2,x2=﹣1(不合題意,舍去).
②x<0時,原方程化為x2+x﹣2=0,解得x1=﹣2,x2=1(不合題意,舍去).
∴原方程的根是x1=2,x2=﹣2.
請參照例題解方程x2+|x﹣4|﹣8=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與解方程.
(1)計算: ﹣(2﹣ 0+( 2
(2)解分式方程: + =4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標;
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標平面內的點,且N點的橫坐標為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,ED=3BE,點P、Q分別在BD,AD上,則AP+PQ的最小值為(

A.2
B.
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黔東南州某中學為了解本校學生平均每天的課外學習實踐情況,隨機抽取部分學生進行問卷調查,并將調查結果分為A,B,C,D四個等級,設學生時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中信息解答下列問題:

(1)本次抽樣調查共抽取了多少名學生?并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調查中,學習時間的中位數(shù)落在哪個等級內?
(3)表示B等級的扇形圓心角α的度數(shù)是多少?
(4)在此次問卷調查中,甲班有2人平均每天課外學習時間超過2小時,乙班有3人平均每天課外學習時間超過2小時,若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

同步練習冊答案