精英家教網 > 初中數學 > 題目詳情

【題目】(3分)如圖,在矩形ABCD中,BC=AB,ADC的平分線交邊BC于點E,AHDE于點H,連接CH并延長交邊AB于點F,連接AE交CF于點O.給出下列命題:

①∠AEB=AEH;DH=EH;HO=AE;BC﹣BF=EH.

其中正確命題的序號是 (填上所有正確命題的序號).

【答案】①③

【解析】

試題在矩形ABCD中,AD=BC=AB=CD,DE平分ADC,∴∠ADE=CDE=45°,ADDE,∴△ADH是等腰直角三角形,AD=AB,AH=AB=CD,∵△DEC是等腰直角三角形,DE=CD,AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AED=AEB,故正確;

設DH=1,則AH=DH=1,AD=DE=,HE=HE=,故錯誤;

∵∠AEH=67.5°,∴∠EAH=22.5°,DH=CH,EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=OHA,OA=OH,∴∠AEH=OHE=67.5°,OH=OE,OH=AE,故正確;

AH=DH,CD=CE,在AFH與CHE中,∵∠AHF=HCE=22.5°FAH=HEC=45°,AH=CE,∴△AFH≌△CHE,AF=EH,在ABE與AHE中,AB=AH,BEA=HEA,AE=AE,∴△ABE≌△AHE,BE=EH,BC﹣BF=(BE+CE)﹣(AB=AF)=(CD+EH)﹣(CD﹣EH)=2EH,故錯誤,故答案為:①③

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】宜居襄陽是我們的共同愿景,空氣質量備受人們關注.我市某空氣質量監(jiān)測站點檢測了該區(qū)域每天的空氣質量情況,統(tǒng)計了20131月份至4月份若干天的空氣質量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.

請根據圖中信息,解答下列問題:

1)統(tǒng)計圖共統(tǒng)計了   天的空氣質量情況;

2)請將條形統(tǒng)計圖補充完整;空氣質量為優(yōu)所在扇形的圓心角度數是   ;

3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,OC∥AD,ADBC的延長線于D,ABOCE.

(1)求證:AD是⊙O的切線;

(2)若⊙O的直徑為6,線段BC=2,求∠BAC的正弦值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B4,0)、C8,0)、D8,8.拋物線y=ax2+bxAC兩點.

(1)直接寫出點A的坐標,并求出拋物線的解析式;

(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t.過點PPEABAC于點E

過點EEFAD于點F,交拋物線于點G.t為何值時,線段EG最長?

連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得CEQ是等腰三角形?請直接寫出相應的t.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)的對稱軸為直線x=﹣1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;

(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,CACB,AB100°<∠C60°,AFBC于點F,在FC上截取FDFB,點EAC上一點,連接DA、DE,且∠ADE=∠B.

1)求證:EDEC;

2)若∠C30°,求BD長;

3)在(2)的條件下,將圖中△DEC繞點D逆時針旋轉得到△DEC′,請問在旋轉的過程中,以點C、E、C′、E′為頂點的四邊形可以構成平行四邊形嗎?若可以,請求出該平行四邊形的面積,若不可以,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,某校開展經典誦讀比賽活動,誦讀材料有《論語》、《大學》、《中庸》(依次用字母A,BC表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內容進行誦讀比賽.

1)小禮誦讀《論語》的概率是   ;(直接寫出答案)

2)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】據深圳某知名網站調查,2015年網民們最關注的熱點話題分別有:消費、教育、環(huán)保、反腐及其他共五類根據調查的部分相關數據,繪制的統(tǒng)計圖表如圖所示:根據所給信息解答下列問題:

請補全條形統(tǒng)計圖并在圖中標明相應數據;

2015年深圳常住人口約有1100萬,請你估計最關注環(huán)保問題的人數約為多少萬人?

在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現準備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

同步練習冊答案