【題目】如圖1,在正方形中,是對角線上的一點(diǎn),點(diǎn)在的延長線上,交于,.
(1)求證:;
(2)連接,若,求;
(3)如圖2,若把正方形改為菱形,其他條件不變,當(dāng)時(shí),猜想與的數(shù)量關(guān)系,并證明你的猜想.
【答案】(1)證明見解析;(2)BE=;(3)BE=DF,理由見解析
【解析】
(1)根據(jù)正方形的性質(zhì)證明△BCE≌△DCE即可;
(2)過E作EK⊥DC于K,EH⊥BC于H,構(gòu)建正方形EHCK,通過證明Rt△DEK≌Rt△FEH得出△DEF是等腰直角三角形,進(jìn)而得解;
(3)先證明△BCE≌△DCE,得∠EBC=∠EDC,BE=ED,根據(jù)三角形內(nèi)角和可得∠DEF=∠DCF=∠ABC=60°,進(jìn)而得出△DEF是等邊三角形,可得結(jié)論.
(1)證明:∵四邊形ABCD是正方形,
∴BC=DC,∠BCE=∠DCE,
∵EC=EC,
∴△BCE≌△DCE,
∴BE=ED,
∵EF=ED,
∴EB=EF;
(2)解:如圖1,過E作EK⊥DC于K,EH⊥BC于H,
∴∠EKC=∠EHC=∠BCD=90°,
∴四邊形EHCK是矩形,
∵∠ECH=45°,
∴△EHC是等腰直角三角形,
∴EH=CH,
∴矩形EHCK是正方形,
∴EK=EH,
∴Rt△DEK≌Rt△FEH,
∴∠DEK=∠FEH,
∴∠DEK+∠FEK=∠FEH+∠FEK,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DF=2,
∴DE=,
∴BE=;
(3)解:BE=DF,理由是:
∵四邊形ABCD是菱形,
∴BC=DC,∠BCE=∠DCE,
∵EC=EC,
∴△BCE≌△DCE,
∴∠EBC=∠EDC,BE=ED,
∵EF=ED,
∴EB=EF,
∴∠EBC=∠EFC,
∴∠EDC=∠EFC,
∵∠EGD=∠CGF,
∴∠DEF=∠DCF=∠ABC=60°,
∴△DEF是等邊三角形,
∴DF=EF,
∴BE=DF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)P作PA,PB,分別與以OA為半徑的半圓切于A,B,延長AO交切線PB于點(diǎn)C,交半圓與于點(diǎn)D.
(1)若PC=5,AC=4,求BC的長;
(2)設(shè)DC:AD=1:2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:
(1)他認(rèn)為該定理有逆定理:“如果一個(gè)三角形某條邊上的中線等于該邊長的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.
(2)如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問的結(jié)論)
(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時(shí)矩形的兩條鄰邊與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°至24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度得桌面.新桌面的設(shè)計(jì)圖如圖1,可繞點(diǎn)旋轉(zhuǎn),在點(diǎn)處安裝一根長度一定且處固定,可旋轉(zhuǎn)的支撐臂,.
(1)如圖2,當(dāng)時(shí),,求支撐臂的長;
(2)如圖3,當(dāng)時(shí),求的長.(結(jié)果保留根號)
(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求證:四邊形ABCD是菱形;
(2)過點(diǎn)D作DE⊥BD,交BC的延長線于點(diǎn)E,若BC=5,BD=8,求四邊形ABED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)A (2,4)和B(-4,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)請直接寫出y1>y2時(shí),x的取值范圍;
(3)過點(diǎn)B作BE∥x軸,AD⊥BE于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若AC=2CD,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由甲、乙兩個(gè)工程隊(duì)承包某校校園綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間比是3︰2,兩隊(duì)合做6天可以完成.
(1)求兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)此項(xiàng)工程由甲、乙兩隊(duì)合做6天完成任務(wù)后,學(xué)校付給他們20000元報(bào)酬,若
按各自完成的工程量分配這筆錢,問甲、乙兩隊(duì)各得到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若等腰△ABC的一邊長a=6,另兩邊長b、c恰好是這個(gè)方程的兩個(gè)根,求此三角形的三邊長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AB=6,D是AC的中點(diǎn),E是BC延長線上的一點(diǎn),CE=CD,DF⊥BE,垂足為F.
(1)求證:BF=EF;
(2)求△BDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com