【題目】個不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“西”、“湖”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個球,球上的漢字剛好是“西”的概率為多少?

(2)甲從中任取一球,不放回,再從中任取一球,請用畫樹狀圖的方法,求出甲取出的兩個球上的漢字恰能組成“美麗”或“西湖”的概率P1;

(3)乙從中任取一球,記下漢字后再放回袋中,再從中任取一球,記乙取出的兩個球上的漢字恰能組成“美麗”或“西湖”的概率為P2,請比較P1,P2的大小關(guān)系。

【答案】(1) (2)樹狀圖略。 (3)

【解析】試題分析:(1)由一個不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“西”、“湖”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,直接利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與取出的兩個球上的漢字恰能組成“美麗”或“西湖”的情況,再利用概率公式即可求得答案;

(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與取出的兩個球上的漢字恰能組成“美麗”或“西湖”的情況,再利用概率公式即可求得答案.

試題解析:(1)∵一個不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“西”、“湖”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,

∴從中任取一個球,球上的漢字剛好是“湘”的概率為:;

(2)畫樹狀圖得:

∵共有12種等可能的結(jié)果,取出的兩個球上的漢字恰能組成“美麗”或“湘湖”的有4種情況,

P1=;

(3)畫樹狀圖得:

∵共有16種等可能的結(jié)果,取出的兩個球上的漢字恰能組成“美麗”或“湘湖”的有4種情況,

P2=

P1P2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=8cm,BC=10cm,折疊矩形的一邊AD , 使點(diǎn)D落在BC邊的中點(diǎn)F處,折痕為AE , 求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬安縣開發(fā)區(qū)某電子電路板廠到井岡山大學(xué)從2014年應(yīng)屆畢業(yè)生中招聘公司職員,對應(yīng)聘者的專業(yè)知識、英語水平、參加社會實(shí)踐與社團(tuán)活動等三項(xiàng)進(jìn)行測試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5:3:2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如表.

得分
應(yīng)聘人
項(xiàng)目

專業(yè)知識

英語水平

參加社會實(shí)踐與
社團(tuán)活動等

85

85

90

85

85

70

80

90

70

90

90

50


(1)分別算出4位應(yīng)聘者的總分;
(2)表中四人“專業(yè)知識”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請你求出四人“參加社會實(shí)踐與社團(tuán)活動等”的平均分及方差;
(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個函數(shù)圖象C1C2上的任一點(diǎn). 當(dāng)a x b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數(shù)在a x b上是“相鄰函數(shù)”,否則稱它們在a x b上是“非相鄰函數(shù)”.

例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.

(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;

(2)若函數(shù)y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;

(3)若函數(shù)y =y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AD⊥BC于D,EF⊥BC于F,∠3=∠E,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,已知南瓜種植面積的增長率是畝產(chǎn)量的增長率的2倍,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A30),B1,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求該二次函數(shù)的解析式;

2)設(shè)該拋物線的頂點(diǎn)為D,求ACD的面積;

3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿ABAC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能證明△ABC≌△DCB的是(

A.AB=DC,AC=DB
B.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠D
D.AB=DC,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(m+3,m+1)在直角坐標(biāo)系的x軸上,則P點(diǎn)的坐標(biāo)為(
A.(0,﹣2)
B.(2,0)
C.(0,2)
D.(0,﹣4)

查看答案和解析>>

同步練習(xí)冊答案