【題目】如圖①,△ABC中,∠ACB=90°,AC=3BC=3,如圖,將△ABC沿一條直線折疊,使得點(diǎn)A與點(diǎn)C重合

(1)在圖中畫出折痕所在的直線l,設(shè)直線lAB,AC分別相交于點(diǎn)DE(尺規(guī)作圖,不寫作法,保留作圖痕跡)

(2)如圖,求△CDB的周長(zhǎng).

【答案】(1)畫圖見解析;(2)△CDB的周長(zhǎng)為9.

【解析】

1)作線段AC的垂直平分線lACE,交ABD,直線l即為所求;

2)想辦法證明△CDB是等邊三角形即可.

(1)作線段AC的垂直平分線lACE,交ABD.直線l即為所求;

(2)Rt△ABC中,∵tanA,

∴∠A=30°,

∴∠B=60°,

∵直線l垂直平分線段AC,

DADC

∴∠A=∠DCA=30°,

∴∠DCB=90°﹣30°=60°,

∴∠DCB=∠B=∠CDB=60°,

∴△CDB是等邊三角形.

∴△CDB的周長(zhǎng)為9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為⊙O的直徑,作⊙O的內(nèi)接正三角形ABC,甲、乙兩人的作法分別是: 甲:①、作OD的中垂線,交⊙O于B,C兩點(diǎn),
②、連接AB,AC,△ABC即為所求的三角形
乙:①、以D為圓心,OD長(zhǎng)為半徑作圓弧,交⊙O于B,C兩點(diǎn).
②、連接AB,BC,CA.△ABC即為所求的三角形.
對(duì)于甲、乙兩人的作法,可判斷(

A.甲、乙均正確
B.甲、乙均錯(cuò)誤
C.甲正確、乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=12cm,點(diǎn)C是直線AB上任意一點(diǎn),M、N分別是AC、BC的中點(diǎn),則線段MN=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠BAC=∠ABD=90°AC=BD,點(diǎn)OADBC的交點(diǎn),點(diǎn)EAB的中點(diǎn).

1)圖中有哪幾對(duì)全等三角形?請(qǐng)寫出來;

2)試判斷OEAB的位置關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)E,F(xiàn)分別在邊AB,BC上,EF與BD交于G,且∠DEF=60°,若AD=3,AE=2,則sin∠BEF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程4x2+4(a﹣1)x+a2﹣a﹣2=0沒有實(shí)數(shù)根.
(1)求實(shí)數(shù)a的取值范圍;
(2)化簡(jiǎn):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BCDBC的延長(zhǎng)線上,∠ABC與∠ACD的平分線相交于點(diǎn)P,則下列結(jié)論中不一定正確的是( )

A. ACD=2∠A B. A=2∠P C. BPAC D. BC=CP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABO

(1)點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_________,點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為_________;

(2)判斷△ABO的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某樓盤準(zhǔn)備以每平方米6000元的均價(jià)對(duì)外銷售,由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對(duì)價(jià)格經(jīng)過兩次下調(diào)后,決定以每平方米4 860元的均價(jià)開盤銷售.
(1)求平均每次下調(diào)的百分率.
(2)某人準(zhǔn)備以開盤價(jià)均價(jià)購(gòu)買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,一次性送裝修費(fèi)每平方米80元,試問哪種方案更優(yōu)惠?

查看答案和解析>>

同步練習(xí)冊(cè)答案