【題目】如圖,已知AD是△ABC的角平分線,CE是△ABC的高,AD與CE相交于點(diǎn)P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度數(shù).
【答案】123°
【解析】
根據(jù)角平分線的定義可得∠BAD=∠CAD=∠BAC=33°,再根據(jù)直角三角形兩銳角互余求出∠B,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可求出∠ADC,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠APC=∠ADC+∠BCE.
∵AD是△ABC的角平分線,∠BAC=66°,
∴∠BAD=∠CAD= ∠BAC=33°,
∵CE是△ABC的高,
∴∠BEC=90°,
∵∠BCE=40°,
∴∠B=50°,
∴∠ADC=∠BAD+∠B=33°+50°=83°;
∠APC=∠ADC+∠BCE
=83°+40°
=123°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“你今天光盤了嗎?”這是國家倡導(dǎo)厲行節(jié)約,反對(duì)浪費(fèi)以來的時(shí)尚流行語,某校團(tuán)委隨機(jī)抽取部分了學(xué)生,對(duì)他們是否了解關(guān)于“光盤行動(dòng)”的情況進(jìn)行調(diào)查,調(diào)查結(jié)果有三種:A、了解很多;B、了解一點(diǎn);C、不了解.團(tuán)委根據(jù)調(diào)查的數(shù)據(jù)進(jìn)行整理,繪制了尚不完整的統(tǒng)計(jì)圖如下,圖1中C區(qū)域的圓心角為36°,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的相關(guān)的信息,解答下列問題:
(1)求本次活動(dòng)共調(diào)查了多少名學(xué)生?
(2)請(qǐng)補(bǔ)全圖2,并求出圖1中,B區(qū)域的圓心角度數(shù);
(3)若該校有2400名學(xué)生,請(qǐng)估算該校不是了解很多的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題.
(1)這次活動(dòng)一共調(diào)查了________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于________度;
(4)若該學(xué)校有1000人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式,S是否有最大值?如有,請(qǐng)求出最大值,沒有請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學(xué)生在完成這道教材上的題目后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小華首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.
(2)接下來,小華用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點(diǎn)C,連接AC,EC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .
②補(bǔ)全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . (3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點(diǎn)G,H分別在直線AB、直線EF上,點(diǎn)C在兩直線外,連接CG,CH,GH,且GH同時(shí)平分∠BGC和∠FHC,請(qǐng)?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC頂角∠A=36°.
(1)尺規(guī)作圖:在AC上作一點(diǎn)D,使AD=BD;(保留作圖痕跡,不必寫作法和證明)
(2)求證:△BCD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)我們知道“三角形三個(gè)內(nèi)角的和為 180°”.現(xiàn)在我們用平行線的性質(zhì)來證明這個(gè)結(jié)論是正確的.
已知:∠BAC、∠B、∠C 是△ABC 的三個(gè)內(nèi)角,如圖 1.
求證:∠BAC+∠B+∠C=180° 證明:過點(diǎn) A 作直線 DE∥BC(請(qǐng)你把證明過程補(bǔ)充完整)
(2)請(qǐng)你用(1)中的結(jié)論解答下面問題:
如圖 2,已知四邊形 ABCD,求∠A+∠B+∠C+∠D 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作BC的平行線交AB的延長線于點(diǎn)D.
(1)當(dāng)點(diǎn)P在什么位置時(shí),DP是⊙O的切線?請(qǐng)說明理由;
(2)當(dāng)DP為⊙O的切線時(shí),求線段DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,EF//AD,∠1=∠2,∠BAC=70°,請(qǐng)將求∠AGD 的過程補(bǔ)充完整.
解:∵EF//AD
∴∠2= ( )
∵∠1=∠2 ∴∠1=∠3 ( )
∴AB// ( )
∴∠BAC+ =180° ( )
∵∠BAC=70° ∴∠AGD= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com