【題目】如圖,已知AD是△ABC的角平分線,CE是△ABC的高,ADCE相交于點(diǎn)P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度數(shù).

【答案】123°

【解析】

根據(jù)角平分線的定義可得∠BAD=CAD=BAC=33°,再根據(jù)直角三角形兩銳角互余求出∠B,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可求出∠ADC,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠APC=ADC+BCE

AD是△ABC的角平分線,∠BAC=66°,
∴∠BAD=CAD= BAC=33°,
CE是△ABC的高,
∴∠BEC=90°,
∵∠BCE=40°,
∴∠B=50°,
∴∠ADC=BAD+B=33°+50°=83°;
APC=ADC+BCE
=83°+40°
=123°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你今天光盤了嗎?這是國家倡導(dǎo)厲行節(jié)約,反對(duì)浪費(fèi)以來的時(shí)尚流行語,某校團(tuán)委隨機(jī)抽取部分了學(xué)生,對(duì)他們是否了解關(guān)于光盤行動(dòng)的情況進(jìn)行調(diào)查,調(diào)查結(jié)果有三種:A、了解很多;B、了解一點(diǎn);C、不了解.團(tuán)委根據(jù)調(diào)查的數(shù)據(jù)進(jìn)行整理,繪制了尚不完整的統(tǒng)計(jì)圖如下,圖1C區(qū)域的圓心角為36°,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的相關(guān)的信息,解答下列問題:

1)求本次活動(dòng)共調(diào)查了多少名學(xué)生?

2)請(qǐng)補(bǔ)全圖2,并求出圖1中,B區(qū)域的圓心角度數(shù);

3)若該校有2400名學(xué)生,請(qǐng)估算該校不是了解很多的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備開展陽光體育活動(dòng),決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題.

1)這次活動(dòng)一共調(diào)查了________名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于________度;

4)若該學(xué)校有1000人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.

(1)直接寫出AB、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;

①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?

②設(shè)△BCF的面積為S,求Sm的函數(shù)關(guān)系式,S是否有最大值?如有,請(qǐng)求出最大值,沒有請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖(1),如果ABCDEF. 那么∠BAC+ACE+CEF=360°.

老師要求學(xué)生在完成這道教材上的題目后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小華首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.

2)接下來,小華用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點(diǎn)C,連接ACEC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.

請(qǐng)你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:

①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .

②補(bǔ)全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . 3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點(diǎn)G,H分別在直線AB、直線EF上,點(diǎn)C在兩直線外,連接CG,CH,GH,且GH同時(shí)平分∠BGC和∠FHC,請(qǐng)?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰ABC頂角∠A=36°

1)尺規(guī)作圖:在AC上作一點(diǎn)D,使AD=BD;(保留作圖痕跡,不必寫作法和證明)

2)求證:BCD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)我們知道“三角形三個(gè)內(nèi)角的和為 180°”現(xiàn)在我們用平行線的性質(zhì)來證明這個(gè)結(jié)論是正確的

已知:∠BAC、∠B、∠C 是△ABC 的三個(gè)內(nèi)角,如圖 1

求證:BAC+B+C=180° 證明:過點(diǎn) A 作直線 DEBC(請(qǐng)你把證明過程補(bǔ)充完整)

2)請(qǐng)你用(1)中的結(jié)論解答下面問題:

如圖 2,已知四邊形 ABCD,求∠A+B+C+D 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作BC的平行線交AB的延長線于點(diǎn)D.

(1)當(dāng)點(diǎn)P在什么位置時(shí),DP是⊙O的切線?請(qǐng)說明理由;

(2)當(dāng)DP為⊙O的切線時(shí),求線段DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,EF//AD,∠1=∠2,∠BAC=70°,請(qǐng)將求∠AGD 的過程補(bǔ)充完整.

解:∵EF//AD

∴∠2= ( )

∵∠1=∠2 ∴∠1=∠3 ( )

AB// ( )

∴∠BAC+ =180° ( )

∵∠BAC=70° ∴∠AGD=

查看答案和解析>>

同步練習(xí)冊(cè)答案