【題目】如圖.利用一面墻(墻的長度不限),用20m的籬笆圍成一個矩形場地ABCD.設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長;
(3)能圍成S=60m2的矩形嗎?說明理由.
【答案】(1)S=x(20﹣2x) (2)4m或6m (3)答案見解析
【解析】
(1)靠墻的一面不需要籬笆,矩形養(yǎng)雞場只需要一個長,兩個寬用籬笆圍成.設(shè)寬為xm,長就是(20-2x)m,用矩形面積公式列表示出S;
(2)令s=48,求得x的值即可;
(3)令s=60,利用根的判別式判斷即可;
解:(1)設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2,則長為(20﹣2x)(m);
依題意列方程:
根據(jù)題意得到:S=x(20﹣2x)
(2)x(20﹣2x)=48,
解得x=4或x=6,
故AB的長為4m或6m.
(3)不能.
因為設(shè)矩形場地的寬為x(m),則長為(20﹣2x)(m),
依題意列方程:x(20﹣2x)=60,
即x2﹣10x+30=0,
△=102﹣4×1×30=﹣20<0,
方程無實數(shù)解,
故矩形場地的面積不能達(dá)到60m2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出個盒子,盒中的紙片既是軸對稱圖形又是中心對稱圖形的概率是 ;
(2)攪勻后先從中摸出個盒子(不放回),再從余下的個盒子中摸出個盒子,把摸出的個盒中的紙片長度相等的邊拼在一起,求拼成的圖形是軸對稱圖形的概率.(不重疊無縫隙拼接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分線,CE⊥AN,垂足是E,連接DE交AC于F.
(1)求證:四邊形ADCE為矩形;
(2)求證:DF∥AB,DF=;
(3)當(dāng)△ABC滿足什么條件時,四邊形ADCE為正方形,簡述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊△ABC中,點D是邊AC上一點,連接BD,將△BCD繞著點B逆時針旋轉(zhuǎn)60,得到△BAE,連接ED,則下列結(jié)論中:①AE∥BC;②∠DEB=60;③∠ADE=∠BDC,其中正確結(jié)論的序號是( )
A.①②B.①③C.②③D.只有①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由;
(2)過點B作⊙O的切線BE交直線CD于點E,若BE=5,CD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(-1,0),請回答下列問題:
(1)求拋物線對應(yīng)的二次函數(shù)的表達(dá)式;
(2)拋物線的頂點為D,對稱軸與x軸交于點E,連接BD,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.
(1)求證:△ABM ∽△EMA;
(2)若AB=2,BM=1,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com