【題目】如圖,在RtABC中,∠BAC90°,DBC的中點,EAD的中點,過點AAFBCBE的延長線于點F.

1)求證:△AEF≌△DEB;

2)求證:四邊形ADCF是菱形.

【答案】(1)見解析;(2)見解析.

【解析】

(1)利用平行線的性質(zhì)及中點的定義,可利用AAS證得結(jié)論;
(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

證明:(1)∵AFBC

∴∠AFE=∠DBE

EAD中點,

AEDE

AEFDEB

∴△AEF≌△DEBAAS

     。2)在RtABC中,DBC的中點,

        所以,ADBDCD

        又AFDB,且AFDB,

        所以,AFDC,且AFDC,

所以,四邊形ADCF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平衡車越來越受到中學(xué)生的喜愛,某公司今年從廠家以3000/輛的批發(fā)價購進某品牌平衡車300輛進行銷售,零售價格為4200/輛,暑期將至,公司決定拿出一部分該品牌平衡車以4000/輛的價格進行促銷.設(shè)全部售出獲得的總利潤為y元,今年暑假期間拿出促銷的該品牌平衡車數(shù)量為x輛,根據(jù)上述信息,解答下列問題:

1)求yx之間的函數(shù)解析式(也稱關(guān)系式),并直接寫出x的取值范圍;

2)若以促銷價進行銷售的數(shù)量不低于零售價銷售數(shù)量的 ,該公司應(yīng)拿出多少輛該品牌平衡車促銷才能使這批車的銷售利潤最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊△ABC的邊長為6,點O是三邊垂直平分線的交點,∠FOG=120°,∠FOG的兩邊OF,OG分別交AB,BC與點DE,∠FOG繞點O順時針旋轉(zhuǎn)時,下列四個結(jié)論正確的是(

OD=OE;②;③;④△BDE的周長最小值為9.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜公司收購蔬菜進行銷售的獲利情況如下表所示:

銷售方式

直接銷售

粗加工后銷售

精加工后銷售

每噸獲利(元)

100

250

450

現(xiàn)在該公司收購了140噸蔬菜,已知該公司每天能精加工蔬菜6噸和粗加工蔬菜16噸(兩種加工不能同時進行)。

1)如果要求在18天內(nèi)全部銷售這140噸蔬菜,請完成下列表格:

銷售方式

全部直接銷售

全部粗加工后銷售

盡量精加工,剩余部分直接銷售

獲利(元)

2)如果先進行精加工,來不及精加工的進行粗加工,要求15天內(nèi)剛好加工完這140噸蔬菜,則應(yīng)如何分配加工時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠一周計劃每日生產(chǎn)自行車100輛,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標準,增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負數(shù)):

星期

增減(輛)

1

+3

2

4

+7

5

10

1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點BOx軸的負半軸上,∠BOC=60°,頂點C的坐標為m,),反比例函數(shù)的圖像與菱形對角線AO交于D,連接BD,BDx軸時,k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個有進水管與出水管的容器,從某時刻開始8min內(nèi)既進水又出水,在隨后的4min內(nèi)只進水不出水,每分鐘的進水量和出水量是兩個常數(shù).容器內(nèi)的水量y(單位:L)與時間x(單位:min)(0≤x≤12)之間的關(guān)系如圖所示:

1)求y關(guān)于x的函數(shù)解析式;

2)每分鐘進水、出水各多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知⊙OABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.

(1)求⊙O的半徑;

(2)請用尺規(guī)作圖作出點P,使得點P優(yōu)弧CAB上時,PBC的面積最大,請保留作圖痕跡,并求出PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工齒輪,已知每1塊金屬原料可以加工成3A齒輪或4B齒輪(說明:每塊金屬原料無法同時既加工A齒輪又加B齒輪),已知1A齒輪和2B齒輪組成一個零件,為了加工更多的零件,要求A、B齒輪恰好配套.請列方程解決下列問題:

1)現(xiàn)有25塊相同的金屬原料,問最多能加工多少個這樣的零件?

2)若把36塊相同的金屬原料全部加工完,問加工的A、B齒輪恰好配套嗎?說明理由

3)若把n塊相同的金屬原料全部加工完,為了使這樣加工出來的A、B齒輪恰好配套,請求出n所滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案