【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結果

下面有三個推斷:

①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

【答案】B

【解析】①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,因試驗次數(shù)比較少,所以只能說“正面向上”的頻率是0.47,不能說概率是0.47,故不正確;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,故正確;

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率不一定是0.45,故不正確.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,二次函數(shù)C1(m>0)的圖象與x軸交于AB兩點(點A在點B的左側(cè)),與y軸交于點C.

(1)求點A和點C的坐標;

(2)AB=4時,

①求二次函數(shù)C1的表達式;

②在拋物線的對稱軸上是否存在點D,使DAC的周長最小,若存在,求出點D的坐標,若不存在,請說明理由;

(3)(2)中拋物線C1向上平移n個單位,得到拋物線C2,若當0x時,拋物線C2x軸只有一個公共點,結合函數(shù)圖象,求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學小組的同學為了解學生每周閱讀的時間,隨機調(diào)查了50名同學,繪制了如圖所示的統(tǒng)計圖,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( 。

A. 中位數(shù)是25人,眾數(shù)是20 B. 中位數(shù)和眾數(shù)都是8小時

C. 中位數(shù)是13人,眾數(shù)是20 D. 中位數(shù)是6小時,眾數(shù)是8小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)(探究)若,則代數(shù)式

(類比)若,則的值為 ;

(2)(應用)當時,代數(shù)式的值是5,求當時, 的值;

(3)(推廣)當時,代數(shù)式的值為,當時,的值為 (的式子表)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是菱形邊上的一動點,它從點出發(fā)沿在路徑勻速運動到點,設的面積為,點的運動時間為,則關于的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學共有   人;

2)補全條形統(tǒng)計圖,并在圖上標明相應的數(shù)據(jù);

3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等腰三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:

(1)如圖①,若點P在線段AB上,且AC=1+,PA=,則:

①線段PB= ,PC=

②猜想:PA2,PB2,PQ2三者之間的數(shù)量關系為 ;

(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結論仍然成立,請你利用圖②給出證明過程;

(3)若動點P滿足,求的值.(提示:請利用備用圖進行探求)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC

(1)求證:∠BAC=CBP

(2)求證:PB2=PCPA;

(3)當AC=6,CP=3時,求sinPAB的值.

查看答案和解析>>

同步練習冊答案