【小題1】背景 :在圖1中,已知線段AB,CD。其中點分別是E,F(xiàn)。
①若A(-1,0),B(3,0),則E點的坐標為________;
②若C(-2,2),D(-2,-1),則F點的坐標為_________;
【小題2】探究: 在圖2中,已知線段AB的端點坐標A(a,b),B(c,d),求出圖中AB中點D的坐標(用含a,b,c,d的代數(shù)式表示),并給出求解過程;
歸納: 無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為A(a,b),B(c,d),AB中點為D(x,y)時,x=______,y=_________(不必證明)。
運用:  在圖3中,一次函數(shù)y=x-2與反比例函數(shù)的圖像交點為A,B。
①求出交點A,B的坐標;
②若以A、O、B、P為頂點的四邊形是平行四邊形,請利用上面的結論求出頂點P的坐標。


【小題1】背景:①(1,0),②
【小題2】探究:過A,B兩點分別作x軸、y軸的垂線,利用梯形中位線定理易得AB中點D的坐標為
歸納:………………………………………………………………………….6分
運用:①由題意得解得:。由題意得A(-1,-3),B(3,1)。②  AB為對角線時P(2,-2); AO為對角線時P(-4,-4); BO為對角線時P(4,-4);…………….10分

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


【小題1】背景 :在圖1中,已知線段AB,CD。其中點分別是E,F(xiàn)。
①若A(-1,0),B(3,0),則E點的坐標為________;
②若C(-2,2),D(-2,-1),則F點的坐標為_________;
【小題2】探究: 在圖2中,已知線段AB的端點坐標A(a,b),B(c,d),求出圖中AB中點D的坐標(用含a,b,c,d的代數(shù)式表示),并給出求解過程;
歸納: 無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為A(a,b),B(c,d),AB中點為D(x,y)時,x=______,y=_________(不必證明)。
運用:  在圖3中,一次函數(shù)y=x-2與反比例函數(shù)的圖像交點為A,B。
①求出交點A,B的坐標;
②若以A、O、B、P為頂點的四邊形是平行四邊形,請利用上面的結論求出頂點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:在中,、三邊的長分別為、、,求這個三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計算出它的面積.
【小題1】請你將的面積直接填寫在橫線上._________________________思維拓展:
【小題2】我們把上述求面積的方法叫做構圖法.若 三邊的長分別為、、),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為)畫出相應的,并求出它的面積.探索創(chuàng)新:
【小題3】若三邊的長分別為、、,且),試運用構圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省杭州市蕭山瓜瀝片八年級12月月考數(shù)學卷 題型:解答題

問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

【小題1】(1)請你將△ABC的面積直接填寫在橫線上.____ _______
【小題2】(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為a、2a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.
【小題3】(3)若△ABC三邊的長分別為、、2(m>0,n>0,且mn),試運用構圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆浙江省金華市浦江五中九年級下學期月考數(shù)學卷 題型:解答題

題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.

問題探究:
【小題1】(1)①如圖1所示,當G在CD邊上時,猜想線段BG、DE的數(shù)量關系及所在直線的位置關系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
【小題2】(2)若將原題中的“正方形”改為“矩形”(如圖所示),且=k(其中k>0),請寫出 線段BG、DE的數(shù)量關系及位置關系.請選擇圖5或圖6證明你的判斷(僅證數(shù)量關系).
拓展應用:
【小題3】(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

同步練習冊答案