如圖,直線y=x+2分別交x、y軸于點A、C,P是該直線上在第一象限內(nèi)的一點,PB⊥x軸,B為垂足,S△ABP=9.
(1)求點P的坐標;
(2)設點R與點P在同一個反比例函數(shù)的圖象上,且點R在直線PB的右側,作RT⊥x軸,T為垂足,當△BRT與△AOC相似時,求點R的坐標.

【答案】分析:(1)證明△AOC∽△ABP,利用線段比求出BP,AB的值從而可求出點P的坐標;
(2)設R點坐標為(x,y),求出反比例函數(shù).又因為△BRT∽△AOC,利用線段比聯(lián)立方程組求出x,y的值.
解答:解:(1)根據(jù)已知條件可得A點坐標為(-4,0),C點坐標為(0,2),
即AO=4,OC=2,
又∵S△ABP=9,
∴AB•BP=18,
又∵PB⊥x軸?OC∥PB,
∴△AOC∽△ABP,
==,
∴2BP=AB,
∴2BP2=18,
∴BP2=9,
∵BP>0,
∴BP=3,
∴AB=6,
∴P點坐標為(2,3);

(2)設R點的坐標為(x,y),
∵P點坐標為(2,3),
∴反比例函數(shù)解析式為y=
又∵△BRT∽△AOC,
∴①時,有=,
則有,
解得,

時,有=,
則有,
解得(不在第一象限,舍去),或
故R的坐標為(+1,),(3,2).
點評:本題考查的是一次函數(shù)的綜合運用以及相似三角形的判定,難度中上.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,直線AB、CD相交于點E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習冊答案