【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn),是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:將點(diǎn)A、B坐標(biāo)代入拋物線解析式,得:
,解得 ,
∴拋物線的解析式為:y=﹣x2+4x+5
(2)
解:∵點(diǎn)P的橫坐標(biāo)為m,
∴P(m,﹣m2+4m+5),E(m,﹣ m+3),F(xiàn)(m,0).
∴PE=|yP﹣yE|=|(﹣m2+4m+5)﹣(﹣ m+3)|=|﹣m2+ m+2|,
EF=|yE﹣yF|=|(﹣ m+3)﹣0|=|﹣ m+3|.
由題意,PE=5EF,即:|﹣m2+ m+2|=5|﹣ m+3|=| m+15|
①若﹣m2+ m+2= m+15,整理得:2m2﹣17m+26=0,
解得:m=2或m= ;
②若﹣m2+ m+2=﹣( m+15),整理得:m2﹣m﹣17=0,
解得:m= 或m= .
由題意,m的取值范圍為:﹣1<m<5,故m= 、m= 這兩個解均舍去.
∴m=2或m=
(3)
解:假設(shè)存在.
作出示意圖如下:
∵點(diǎn)E、E′關(guān)于直線PC對稱,
∴∠1=∠2,CE=CE′,PE=PE′.
∵PE平行于y軸,∴∠1=∠3,
∴∠2=∠3,∴PE=CE,
∴PE=CE=PE′=CE′,即四邊形PECE′是菱形.
當(dāng)四邊形PECE′是菱形存在時(shí),
由直線CD解析式y(tǒng)=﹣ x+3,可得OD=4,OC=3,由勾股定理得CD=5.
過點(diǎn)E作EM∥x軸,交y軸于點(diǎn)M,易得△CEM∽△CDO,
∴ ,即 ,解得CE= |m|,
∴PE=CE= |m|,又由(2)可知:PE=|﹣m2+ m+2|
∴|﹣m2+ m+2|= |m|.
①若﹣m2+ m+2= m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣ ;
②若﹣m2+ m+2=﹣ m,整理得:m2﹣6m﹣2=0,解得m1=3+ ,m2=3﹣ .
由題意,m的取值范圍為:﹣1<m<5,故m=3+ 這個解舍去.
當(dāng)四邊形PECE′是菱形這一條件不存在時(shí),
此時(shí)P點(diǎn)橫坐標(biāo)為0,E,C,E'三點(diǎn)重合與y軸上,也符合題意,
∴P(0,5)
綜上所述,存在滿足條件的點(diǎn)P,可求得點(diǎn)P坐標(biāo)為(0,5),(﹣ , ),(4,5),(3﹣ ,2 ﹣3)
方法二:
若E(不與C重合時(shí))關(guān)于直線PC的對稱點(diǎn)E′在y軸上,則直線CD與直線CE′關(guān)于PC軸對稱.
∴點(diǎn)D關(guān)于直線PC的對稱點(diǎn)D′也在y軸上,
∴DD′⊥CP,∵y=﹣ x+3,
∴D(4,0),CD=5,
∵OC=3,
∴OD′=8或OD′=2,
①當(dāng)OD′=8時(shí),D′(0,8),設(shè)P(t,﹣t2+4t+5),D(4,0),C(0,3),
∵PC⊥DD′,∴KPC×KDD′=﹣1,
∴ ,
∴2t2﹣7t﹣4=0,
∴t1=4,t2=﹣ ,
②當(dāng)OD′=2時(shí),D′(0,﹣2),
設(shè)P(t,﹣t2+4t+5),
∵PC⊥DD′,∴KPC×KDD′=﹣1,
∴ =﹣1,
∴t1=3+ ,t2=3﹣ ,
∵點(diǎn)P是x軸上方的拋物線上一動點(diǎn),
∴﹣1<t<5,
∴點(diǎn)P的坐標(biāo)為(﹣ , ),(4,5),(3﹣ ,2 ﹣3).
若點(diǎn)E與C重合時(shí),P(0,5)也符合題意.
綜上所述,存在滿足條件的點(diǎn)P,可求得點(diǎn)P坐標(biāo)為(0,5),(﹣ , ),(4,5),(3﹣ ,2 ﹣3)
【解析】(1)利用待定系數(shù)法求出拋物線的解析式;(2)用含m的代數(shù)式分別表示出PE、EF,然后列方程求解;(3)解題關(guān)鍵是識別出當(dāng)四邊形PECE′是菱形,然后根據(jù)PE=CE的條件,列出方程求解;當(dāng)四邊形PECE′是菱形不存在時(shí),P點(diǎn)y軸上,即可得到點(diǎn)P坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點(diǎn)的俯角分別為60°和35°,已知大橋BC的長度為100m,且與地面在同一水平面上.求熱氣球離地面的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈ ,cos35°≈ ,tan35°≈ , ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB表示路燈,當(dāng)身高為1.6米的小名站在離路燈1.6的D處時(shí),他測得自己在路燈下的影長DE與身高CD相等,當(dāng)小明繼續(xù)沿直線BD往前走到E點(diǎn)時(shí),畫出此時(shí)小明的影子,并計(jì)算此時(shí)小明的影長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點(diǎn)在BC上,且四邊形AEFD是平行四邊形.
(1)AD與BC有何等量關(guān)系?請說明理由;
(2)當(dāng)AB=DC時(shí),求證:四邊形AEFD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠BAC=90°,AD⊥BC于D,則下列結(jié)論中,正確的個數(shù)為( )
①AB⊥AC;②AD與AC互相垂直;③點(diǎn)C到AB的垂線段是線段AB;④點(diǎn)A到BC的距離是線段AD的長度;⑤線段AB的長度是點(diǎn)B到AC的距離;⑥線段AB是點(diǎn)B到AC的距離;
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的虛線網(wǎng)格是等邊三角形網(wǎng)格,它的每一個小三角形都是邊長為1的等邊三角形.
(1)邊長為1的等邊三角形的高=____;
(2)圖①中的ABCD的對角線AC的長=____;
(3)圖②中的四邊形EFGH的面積=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從A,B向甲、乙兩地運(yùn)送蔬菜,A,B兩個蔬菜市場各有蔬菜14噸,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從A到甲地運(yùn)費(fèi)50元/噸,到乙地30元/噸;從B地到甲運(yùn)費(fèi)60元/噸,到乙地45元/噸.
(1)設(shè)A地到甲地運(yùn)送蔬菜x噸,請完成下表:
運(yùn)往甲地(單位:噸) | 運(yùn)往乙地(單位:噸) | |
A | x | |
B |
(2)設(shè)總運(yùn)費(fèi)為W元,請寫出W與x的函數(shù)關(guān)系式
(3)怎樣調(diào)運(yùn)蔬菜才能使運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫推理理由
如圖,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.將∠E=∠1的過程填寫完整.
解:解:∵AD⊥BC, EF⊥BC( 已知 )
∴∠ADC=∠EFC= 90°( 垂直的意義 )
∴AD//EF
∴∠1= ()
∠E= ()
又∵AD平分∠BAC(已知 )
∴ =
∴∠1=∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E是BC邊上的點(diǎn),連接AD,AE,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△AD′E,連接D′C,若BD=CD′;
(1)求證:△ABD≌△ACD′;
(2)若∠BAC=120°,求∠DAE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com