【題目】如圖,ABCD的對角線AC、BD相交于點O,點E、F分別是線段AO、BO的中點,若AC+BD=22cm,△OAB的周長是16cm,則EF的長為cm.

【答案】2.5
【解析】解:∵四邊形ABCD是平行四邊形, ∴OA=OC,OB=OD,
∵AC+BD=22cm,
∴OA+OB=11cm,
∵△OAB的周長為16cm,
∴AB=5cm,
∵點E、F分別是線段AO、BO的中點,
∴EF是△OAB的中位線,
∴EF= AB=
所以答案是2.5
【考點精析】本題主要考查了三角形中位線定理和平行四邊形的性質(zhì)的相關知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是
( 。

A.
B.
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,對角線ACBC相交于O , EAB的中點,FDE的中點,GCF的中點, OHDEH , 過AAIDEI , 交BDJ , 交BCK , 連接BI

下列結論:①GAC的距離等于 ;②OH ;③BK AK;④∠BIJ=45°.其中正確的結論是
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B為圓心,半徑為3的⊙O沿BC方向以每秒1個單位的速度平移,當⊙O運動到與直線相交于點C時(點OBC上),⊙O停止運動.

(1) (2) (3)
(1)當運動停止時,試判斷直線AB與⊙O的位置關系,并證明你的結論;
(2)在平移過程中,若⊙O與AB相切于點D,連接CD , 求△ACD的面積;
(3)在平移過程中,若⊙O經(jīng)過AB的中點G時, EFOC上的兩個動點,且EF=1.6,當四邊形AGEF的周長最小時,試求OE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里裝有40個黑、白兩種顏色的球,這些球除顏色外完全相同.小麗做摸球?qū)嶒灒瑪噭蚝笏龔暮凶永锩鲆粋球記下顏色后,再把球放回盒子中,不斷重復上述過程,表是實驗中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

200

300

500

800

1000

3000

摸到白球的次數(shù)m

65

124

178

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為 . (精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,已知定點A(1,0)B(0,1).

(1)如圖1,若動點Cx軸上運動,則使ABC為等腰三角形的點C有幾個?

(2)如圖2,過點A,B向過原點的直線l作垂線,垂足分別為M、N,試判斷線段AM、BN、MN之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD中,F(xiàn)是BC邊的中點,連接DF并延長,交AB的延長線于點E.求證:AB=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=﹣ 上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是( )

A.y=x
B.y=x+1
C.y=x+2
D.y=x+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點A(2,1)和點B(0,2).

(1)求出函數(shù)的關系式;

(2)在平面置角坐標系內(nèi)畫一次函數(shù)的圖象,回答下列問題:

①y的值隨著x的值的增大而   ,它的圖象與x軸的交點坐標是   

下列點在一次函數(shù)圖象上的是   ;

(1,),(﹣2,3),(6,﹣5)

x   ,時,y>0.

查看答案和解析>>

同步練習冊答案