【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應值如表:

x

﹣5

﹣4

﹣3

﹣2

﹣1

0

y

4

0

﹣2

﹣2

0

4

下列說法正確的是( 。

A. 拋物線的開口向下

B. x>﹣時,yx的增大而增大

C. 二次函數(shù)的最小值是﹣2

D. 拋物線的對稱軸是x=1

【答案】B

【解析】

利用待定系數(shù)法求出函數(shù)的解析式,再根據(jù)二次函數(shù)的性質逐項分析四個選項即可得出結論.

將點(-4,0)、(-1,0)、(0,4)代入到二次函數(shù)y=ax2+bx+c中,

得:,解得:

∴二次函數(shù)的解析式為y=x2+5x+4.

A、a=1>0,拋物線開口向上,A不正確;

B、-,當x>-時,yx的增大而增大,B正確;

C、y=x2+5x+4=(x+2-,二次函數(shù)的最小值是-,C不正確;

D、-,拋物線的對稱軸是x=-,D不正確.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】圖①是一個長為、寬為的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.

1)請用兩種不同的方法求圖②中陰影部分的面積.

方法1 ;

方法2 ;

2)觀察圖②請你寫出下列三個代數(shù)式:之間的等量關系.

3)根據(jù)(2)題中的等量關系,解決如下問題:

已知:,求的值;

②已知:,求:的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠ABC75°,EBC延長線上一點,∠ABC與∠ACE的平分線相交于點D.則∠D的度數(shù)為( 。

A.15°B.17.5°C.20°D.22.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線x軸交于AB兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標為(﹣1,0).

1)求D點的坐標;

2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);

3)如圖2,已知點P﹣4,0),點Qx軸下方的拋物線上,直線PQ交線段AC于點M,當∠PMA=∠E時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比i=12.4,求大樹CD的高度?(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81tan36°≈0.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,ABC是等邊三角形,AE=CD,BQADQ,BEAD于點P,下列說法:①∠APE=C,AQ=BQ,BP=2PQ,AE+BD=AB,其中正確的個數(shù)有( )個。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時船C與船B的距離是多少.(結果保留小數(shù)點后一位)

參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點AE重合),在AE同側分別作正△ABC和正△CDEADBE交于點O,ADBC交于點PBECD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP⑤∠AOB=60°

恒成立的結論有 .(把你認為正確的序號都填上)

查看答案和解析>>

同步練習冊答案