【題目】如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
【答案】(1) y=-x2+x-2;(2)點P為(2,1)或(5,-2)或(-3,-14)或(0,-2).
【解析】
(1)用待定系數(shù)法求出拋物線解析式;
(2)以A、P、M為頂點的三角形與△OAC相似,分兩種情況討論計算即可.
解:(1)∵該拋物線過點C(0,-2),
∴可設該拋物線的解析式為y=ax2+bx-2.
將A(4,0),B(1,0)代入,得,解得 ,
∴此拋物線的解析式為.
(2)存在,
設P點的橫坐標為m,則P點的縱坐標為-m2+m-2,
當1<m<4時,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,
∴①當==時,△APM∽△ACO,即4-m=2(-m2+m-2).
解得m1=2,m2=4(舍去),∴P(2,1).
、诋==時,△APM∽△CAO,即2(4-m)=-m2+m-2.
解得m1=4,m2=5(均不合題意,舍去),∴當1<m<4時,P(2,1).
類似地可求出當m>4時,P(5,-2).
當m<1時,P(-3,-14)或P(0,-2),
綜上所述,符合條件的點P為(2,1)或(5,-2)或(-3,-14)或(0,-2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為1的的圓心A在拋物線y=(x-3)2-1上,AB//x軸交 于點B(點B在點A的右側(cè)),當點A在拋物線上運動時,點B隨之運動得到的圖象的函數(shù)表達式為( )
A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程
當m取何值時,這個方程有兩個不相等的實根?
若方程的兩根都是正數(shù),求m的取值范圍;
設,是這個方程的兩個實數(shù)根,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,n)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0,m<0)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)求一次函數(shù)解析式及m的值;
(2)根據(jù)圖象直接寫出在第二象限內(nèi),當x取何值時,一次函數(shù)小于于反比例函數(shù)的值?
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,菱形ABCD中,對角線AC、BD相交于點O,且AC=12cm,BD=16cm.點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,直線EF從點D出發(fā),沿DB方向勻速運動,速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點E,Q,F;當直線EF停止運動時,點P也停止運動.連接PF,設運動時間為t(s)(0<t<8).解答下列問題:
(1)當t為何值時,四邊形APFD是平行四邊形?
(2)設四邊形APFE的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使S四邊形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此時P,E兩點間的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個梯子AB斜靠在一豎直的墻AO上,測得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時梯子的底端也恰好外移0.5米,則梯子的長度AB為( )
A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三個盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個球,分別為一個紅球和一個綠球;乙盒中裝有三個球,分別為兩個綠球和一個紅球;丙盒中裝有兩個球,分別為一個紅球和一個綠球,從三個盒子中各隨機取出一個小球
(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果
(2)請直接寫出事件“取出至少一個紅球”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以△ABC的邊AB,AC為邊分別向外作正方形ABDE和正方形ACFG,連接EG,M為EG的中點,連接AM.
(1)如圖1,∠BAC=90°,試判斷AM與BC關系?
(2)如圖2,∠BAC≠90°,圖1中的結(jié)論是否成立?若不成立,說明理由;若成立,給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,E是BC邊的中點,點P在射線AD上,過P作PF⊥AE于F.
(1)求證:△PFA∽△ABE;
(2)當點P在射線AD上運動時,設PA=x,是否存在實數(shù)x,使以P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com