【題目】如圖,在矩形中,為射線上一動點,將沿折疊,得到恰好落在射線上,則的長為________

【答案】15

【解析】

如圖1,根據(jù)折疊的性質(zhì)得到AB=A=5E=BE,根據(jù)勾股定理求出BE,如圖2,根據(jù)折疊的性質(zhì)得到A=AB=5,求得AB=BF=5,根據(jù)勾股定理得到CF=4根據(jù)相似三角形的性質(zhì)列方程即可得到結論.

∵四邊形ABCD是矩形,

AD=BC=3CD=AB=5,

如圖1,由折疊得AB=A=5,E=BE,

,

Rt中,

,

解得BE=

如圖2,由折疊得AB=A=5,

CDAB

∴∠=,

,

AE垂直平分,

BF=AB=5

,

CFAB

∴△CEF∽△ABE,

,

,

BE=15,

故答案為:15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綠色生態(tài)農(nóng)場生產(chǎn)并銷售某種有機產(chǎn)品,假設生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機產(chǎn)品每千克的銷售價y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關系.

(1)求該產(chǎn)品銷售價y1(元)與產(chǎn)量x(kg)之間的函數(shù)關系式;

(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關系式;

(3)當產(chǎn)量為多少時,這種產(chǎn)品獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知⊙OΔADB的外接圓,∠ADB的平分線DCAB于點M,交⊙O于點C,連接AC,BC.

(1)求證:AC=BC;

(2)如圖2,在圖1 的基礎上做⊙O的直徑CFAB于點E,連接AF,過點A作⊙O的切線AH,若AH//BC,求∠ACF的度數(shù);

(3)在(2)的條件下,若ΔABD的面積為,ΔABDΔABC的面積比為2:9,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,G是邊長為4的正方形ABCD的邊BC上的一點,矩形DEFG的邊EFA,GD=5.

(1)指出圖中所有的相似三角形;

(2)求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=﹣,下列結論:圖象必經(jīng)過點(﹣3,1);圖象在第二,四象限內(nèi);yx的增大而增大;x>﹣1時,y>3.其中錯誤的結論有(  )

A. ①④ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A4,0),O為坐標原點,P是線段OA上任意一點不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下它們的頂點分別為B、C射線OB與AC相交于點D當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )

A B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是O的直徑,PA切O于點A,點B是O上的一點,且∠BAC=30°,∠APB=60°.

(1)求證:PB是O的切線;

(2)O的半徑為2,求弦AB及PA,PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校實行學案式教學,需印制若干份教學學案.印刷廠有,甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要,兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關系如圖所示.

1)填空:甲種收費方式的函數(shù)關系式是__________,乙種收費方式的函數(shù)關系式是__________.

2)該校某年級每次需印制100450(含100450)份學案,選擇哪種印刷方式較合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 yx2+2x 的頂點為 A,直線 yx+2 與拋物線交于 B,C 兩點.

(1)求 A,B,C 三點的坐標;

(2)作 CDx 軸于點 D,求證:△ODC∽△ABC;

(3)若點 P 為拋物線上的一個動點,過點 P PMx 軸于點 M,則是否還存在除 C 點外的其他位置的點,使以 O,P,M 為頂點的三角形與△ABC 相似? 若存在,請求出這樣的 P 點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案