【題目】如圖,在連長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH.下列結(jié)論正確的個數(shù)是(

ABG∽△FDG;HD平分EHG;AGBE;SHDG:SHBG=tanDAG;線段DH的最小值是2-2

A.2 B.3 C.4 D.5

【答案】C.

【解析】

試題解析:四邊形ABCD是正方形,

AB=CD,BAD=ADC=90°,ADB=CDB=45°,

ABE和DCF中,

∴△ABE≌△DCF(SAS),

∴∠ABE=DCF,

ADG和CDG中,

,

∴△ADG≌△CDG(SAS),

∴∠DAG=DCF,

∴∠ABE=DAG,

∵∠DAG+BAH=90°,

∴∠BAE+BAH=90°,

∴∠AHB=90°,

AGBE,故正確,

同法可證:AGB≌△CGB,

DFCB,

∴△CBG∽△FDG,

∴△ABG∽△FDG,故正確,

SHDG:SHBG=DG:BG=DF:BC=DF:CD=tanFCD,

∵∠DAG=FCD,

SHDG:SHBG=tanFCD,tanDAG,故正確

取AB的中點O,連接OD、OH,

正方形的邊長為4,

AO=OH=×4=2,

由勾股定理得,OD=

由三角形的三邊關(guān)系得,O、D、H三點共線時,DH最小,

DH最小=2﹣2.

無法證明DH平分EHG,故錯誤,

①③④⑤正確,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)女子足球隊15名隊員的年齡情況如下表:

年齡(歲)

13

14

15

16

隊員(人)

2

3

6

4

這支球隊隊員的年齡的眾數(shù)和中位數(shù)分別是( 。
A.14,15
B.14,14.5
C.15,15
D.15,14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,以為直徑的邊于點,過點,與過點的切線交于點,連接.

(1)求證:;

(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個數(shù)的立方根是它本身,那么這個數(shù)是( )

A. 1、0 B. - 1 C. 0 D. 1 、 - 1、 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地一天的最高氣溫是12℃,最低氣溫是2℃,則該地這天的溫差是( 。
A.﹣10℃
B.10℃
C.14℃
D.﹣14℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

在四邊形ABCD中,對角線AC、BD交于點O.若四邊形ABCD是正方形如圖1:則有AC=BD,ACBD.

旋轉(zhuǎn)圖1中的RtCOD到圖2所示的位置,AC與BD有什么關(guān)系?(直接寫出)

若四邊形ABCD是菱形,ABC=60°,旋轉(zhuǎn)RtCOD至圖3所示的位置,AC與BD又有什么關(guān)系?寫出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校實行學(xué)案式教學(xué),需印制若干份數(shù)學(xué)學(xué)案,印刷廠有甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要.兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示:
(1)填空:甲種收費的函數(shù)關(guān)系式是 . 乙種收費的函數(shù)關(guān)系式是
(2)該校某年級每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育課上,某班兩名同學(xué)分別進(jìn)行了5次短跑訓(xùn)練,要判斷哪一位同學(xué)的成績比較穩(wěn)定,通常要比較兩名同學(xué)成績的(  )
A.平均數(shù)
B.方差
C.眾數(shù)
D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC≌△DEF,A=80°E=40°,則F等于(

A80° B40° C120° D60°

查看答案和解析>>

同步練習(xí)冊答案