【題目】如圖,在連長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH.下列結(jié)論正確的個數(shù)是( )
①△ABG∽△FDG;②HD平分∠EHG;③AG⊥BE;④S△HDG:S△HBG=tan∠DAG;⑤線段DH的最小值是2-2
A.2 B.3 C.4 D.5
【答案】C.
【解析】
試題解析:∵四邊形ABCD是正方形,
∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,
在△ABE和△DCF中,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCF,
∴∠ABE=∠DAG,
∵∠DAG+∠BAH=90°,
∴∠BAE+∠BAH=90°,
∴∠AHB=90°,
∴AG⊥BE,故③正確,
同法可證:△AGB≌△CGB,
∵DF∥CB,
∴△CBG∽△FDG,
∴△ABG∽△FDG,故①正確,
∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,
又∵∠DAG=∠FCD,
∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正確
取AB的中點O,連接OD、OH,
∵正方形的邊長為4,
∴AO=OH=×4=2,
由勾股定理得,OD=,
由三角形的三邊關(guān)系得,O、D、H三點共線時,DH最小,
DH最小=2﹣2.
無法證明DH平分∠EHG,故②錯誤,
故①③④⑤正確,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)女子足球隊15名隊員的年齡情況如下表:
年齡(歲) | 13 | 14 | 15 | 16 |
隊員(人) | 2 | 3 | 6 | 4 |
這支球隊隊員的年齡的眾數(shù)和中位數(shù)分別是( 。
A.14,15
B.14,14.5
C.15,15
D.15,14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個數(shù)的立方根是它本身,那么這個數(shù)是( )
A. 1、0 B. - 1 C. 0 D. 1 、 - 1、 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
在四邊形ABCD中,對角線AC、BD交于點O.若四邊形ABCD是正方形如圖1:則有AC=BD,AC⊥BD.
旋轉(zhuǎn)圖1中的Rt△COD到圖2所示的位置,AC’與BD’有什么關(guān)系?(直接寫出)
若四邊形ABCD是菱形,∠ABC=60°,旋轉(zhuǎn)Rt△COD至圖3所示的位置,AC’與BD’又有什么關(guān)系?寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校實行學(xué)案式教學(xué),需印制若干份數(shù)學(xué)學(xué)案,印刷廠有甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要.兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示:
(1)填空:甲種收費的函數(shù)關(guān)系式是 . 乙種收費的函數(shù)關(guān)系式是 .
(2)該校某年級每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,某班兩名同學(xué)分別進(jìn)行了5次短跑訓(xùn)練,要判斷哪一位同學(xué)的成績比較穩(wěn)定,通常要比較兩名同學(xué)成績的( )
A.平均數(shù)
B.方差
C.眾數(shù)
D.中位數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com