【題目】如圖所示,已知ABC中,AB=AC,BAD=30°,AD=AE,求∠EDC的度數(shù).

【答案】設(shè)∠EDC=xB=C=y,

AED=EDC+C=x+y,

又因?yàn)?/span>AD=AE,所以∠ADE=AED=x+y,

則∠ADC=ADE+EDC=2x+y,

又因?yàn)椤?/span>ADC=B+BAD

所以2x+y=y+30,

解得x=15,

所以∠EDC的度數(shù)是

【解析】

可以設(shè)根據(jù) 即可列出方程,從而求解.

設(shè)∠EDC=x,B=C=y,

AED=EDC+C=x+y

又因?yàn)?/span>AD=AE,所以∠ADE=AED=x+y,

則∠ADC=ADE+EDC=2x+y,

又因?yàn)椤?/span>ADC=B+BAD

所以2x+y=y+30,

解得x=15,

所以∠EDC的度數(shù)是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AD是△ABC的角平分線,△ABC的一個外角的平分線AE交邊BC的延長線于點(diǎn)E,且∠BAD=20°,∠E=30°,則∠B的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3的頂點(diǎn)為M(2,﹣1),交x軸于點(diǎn)A、B兩點(diǎn),交y軸于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求拋物線的解析式;
(2)設(shè)經(jīng)過點(diǎn)C的直線與該拋物線的另一個點(diǎn)為D,且直線CD和直線CA關(guān)于直線CB對稱,求直線CD的解析式;
(3)在該拋物線的對稱軸上存在點(diǎn)P,滿足PM2+PB2+PC2=35,求點(diǎn)P的坐標(biāo);并直接寫出此時直線OP與該拋物線交點(diǎn)的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,其中弧DE、弧EF、弧FG的圓心依次為點(diǎn)A、B、C.
(1)求點(diǎn)D沿三條弧運(yùn)動到點(diǎn)G所經(jīng)過的路線長;
(2)判斷直線GB與DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則PEF和PGH的面積和等于.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老王的魚塘里年初養(yǎng)了某種魚2000,到年底捕撈出售為了估計魚的總產(chǎn)量,從魚塘里捕撈了三次,得到如下表的數(shù)據(jù):

魚的條數(shù)

平均每條魚的質(zhì)量

第一次捕撈

10

1.7千克

第二次捕撈

25

1.8千克

第三次捕撈

15

2.0千克

若老王放養(yǎng)這種魚的成活率是95%,則:

(1)魚塘里這種魚平均每條重約多少千克?

(2)魚塘里這種魚的總產(chǎn)量是多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一次函數(shù)y=mx+4m﹣2.

(1)若這個函數(shù)的圖象經(jīng)過原點(diǎn),求m的值;

(2)若這個函數(shù)的圖象不過第四象限,求m的取值范圍;

(3)不論m取何實(shí)數(shù)這個函數(shù)的圖象都過定點(diǎn),試求這個定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)騎自行車去郊外春游,騎行1小時后,自行車出現(xiàn)故障,維修好后繼續(xù)騎行,下圖表示他離家的距離y(千米)與所用的時間x()之間關(guān)系的圖象

(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方用了多長時間?此時離家多遠(yuǎn)?

(2)求小明出發(fā)2.5小時后離家多遠(yuǎn);

(3)求小明出發(fā)多長時間離家12千米.

查看答案和解析>>

同步練習(xí)冊答案