【題目】如圖,拋物線(xiàn)y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0),B(﹣1,2)三點(diǎn).
(1)寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線(xiàn)上,若x1<x2<1,比較y1,y2的大小,并說(shuō)明理由;
(3)點(diǎn)C與點(diǎn)B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),求直線(xiàn)AC的函數(shù)解析式.
【答案】(1)對(duì)稱(chēng)軸為x=1,頂點(diǎn)坐標(biāo)(1,﹣);(2)y1>y2,理由見(jiàn)解析;(3)y=2x﹣4
【解析】
(1)根據(jù)圖示可以直接寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸,求出拋物線(xiàn)的解析式即可求得頂點(diǎn)坐標(biāo);
(2)根據(jù)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)坐標(biāo)可以求得該拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=1,然后根據(jù)函數(shù)圖象的增減性進(jìn)行解題;
(3)根據(jù)已知條件可以求得點(diǎn)C的坐標(biāo)是(3,2),所以根據(jù)點(diǎn)A、C的坐標(biāo)來(lái)求直線(xiàn)AC的函數(shù)關(guān)系式.
解:(1)∵拋物線(xiàn)y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0),
∴,
∴a=,b=﹣,
∴拋物線(xiàn)的解析式為y==,
∴拋物線(xiàn)的對(duì)稱(chēng)軸為x=1,頂點(diǎn)坐標(biāo)(1,﹣).
(2)∵該拋物線(xiàn)開(kāi)口向上,對(duì)稱(chēng)軸為直線(xiàn)x=1,
∴當(dāng)x<1時(shí),y隨x的增大而減小,而x1<x2<1,
故y1>y2,
(3)∵點(diǎn)B(﹣1,2)在該拋物線(xiàn)上,點(diǎn)C與點(diǎn)B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸x=1對(duì)稱(chēng),
∴C(3,2),
設(shè)直線(xiàn)AC的函數(shù)解析式為y=kx+m,則
,
解得
∴直線(xiàn)AC的函數(shù)解析式為y=2x﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點(diǎn)E處有一棵盛開(kāi)的桃花的小桃樹(shù),他想利用平面鏡測(cè)量的方式計(jì)算一下小桃樹(shù)到山腳下的距離,即DE的長(zhǎng)度,小華站在點(diǎn)B的位置,讓同伴移動(dòng)平面鏡至點(diǎn)C處,此時(shí)小華在平面鏡內(nèi)可以看到點(diǎn)E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請(qǐng)你利用以上的數(shù)據(jù)求出DE的長(zhǎng)度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一條長(zhǎng)為48cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于74cm2,那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于68cm2嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由.
(3)該怎么剪,才能使這兩個(gè)正方形的面積之和為最小,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=1,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA'B′C'的位置,則點(diǎn)B'的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是實(shí)驗(yàn)室中的一種擺動(dòng)裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動(dòng)臂AD可繞點(diǎn)A旋轉(zhuǎn),擺動(dòng)臂DM可繞點(diǎn)D旋轉(zhuǎn),AD=30,DM=10.
(1)在旋轉(zhuǎn)過(guò)程中,
①當(dāng)A,D,M三點(diǎn)在同一直線(xiàn)上時(shí),求AM的長(zhǎng).
②當(dāng)A,D,M三點(diǎn)為同一直角三角形的頂點(diǎn)時(shí),求AM的長(zhǎng).
(2)若擺動(dòng)臂AD順時(shí)針旋轉(zhuǎn)90°,點(diǎn)D的位置由△ABC外的點(diǎn)D1轉(zhuǎn)到其內(nèi)的點(diǎn)D2處,連結(jié)D1D2,如圖2,此時(shí)∠AD2C=135°,CD2=60,求BD2的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.
(1)當(dāng)k取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)在(1)的條件下,若k是滿(mǎn)足條件的最小整數(shù),求方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在BC上,BD=DC,過(guò)點(diǎn)D作DE⊥AC,垂足為E,⊙O經(jīng)過(guò)A,B,D三點(diǎn)且與AC的另一個(gè)交點(diǎn)為F.
(1)求證:DE是⊙O的切線(xiàn);
(2)AB=12,∠BAC=60°,求線(xiàn)段DE,EF與所圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知拋物線(xiàn)與一次函數(shù)的圖象相交于,兩點(diǎn),點(diǎn)是拋物線(xiàn)上不與,重合的一個(gè)動(dòng)點(diǎn).
(1)請(qǐng)求出,,的值;
(2)當(dāng)點(diǎn)在直線(xiàn)上方時(shí),過(guò)點(diǎn)作軸的平行線(xiàn)交直線(xiàn)于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)度為,求出關(guān)于的解析式;
(3)在(2)的基礎(chǔ)上,設(shè)面積為,求出關(guān)于的解析式,并求出當(dāng)取何值時(shí),取最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙ O,其外角平分線(xiàn)AD交⊙ O于D,DM⊥ AC于M,下列結(jié)論中正確的是 ____________。
①DB=DC; ②AC+AB=2CM;③AC﹣AB=2AM; ④.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com