【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況探索結(jié)論
當(dāng)點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:AE__________DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE__________DB(填“>”,“<”或“=”).理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長.
【答案】(1)=;(2)=,證明見解析;(3)3或1.
【解析】
試題分析:本題主要考查全等三角形的判定和性質(zhì)及等邊三角形的性質(zhì)和判定,利用全等得到BD=EF,再找EF和AE的關(guān)系是解題的關(guān)鍵.
(1)當(dāng)E為中點時,過E作EF∥BC交AC于點F,則可證明△BDE≌△FEC,可得到AE=DB;
(2)類似(1)過E作EF∥BC交AC于點F,可利用AAS證明△BDE≌△FEC,可得BD=EF,再證明△AEF是等邊三角形,可得到AE=EF,可得AE=DB;
(3)分點E在AB上和在BA的延長線上,類似(2)證得全等,再利用平行得到.
試題解析:
(1)答案為:=.
(2)答案為:=.
在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE=∠BAC=60°,
∴AE=AF=EF,
∴AB﹣AE=AC﹣AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
在△DBE和△EFC中,
,
∴△DBE≌△EFC(SAS),
∴DB=EF,
∴AE=BD.
(3)解:分為四種情況:
如圖1:
∵AB=AC=1,AE=2,
∴B是AE的中點,
∵△ABC是等邊三角形,
∴AB=AC=BC=1,△ACE是直角三角形(根據(jù)直角三角形斜邊的中線等于斜邊的一半),
∴∠ACE=90°,∠AEC=30°,
∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,
∴∠DEB=180°﹣30°﹣60°=90°,
即△DEB是直角三角形.
∴BD=2BE=2(30°所對的直角邊等于斜邊的一半),
即CD=1+2=3.
如圖2,
過A作AN⊥BC于N,過E作EM⊥CD于M,
∵等邊三角形ABC,EC=ED,
∴BN=CN=BC=,CM=MD=CD,AN∥EM,
∴△BAN∽△BEM,
∴=,
∵△ABC邊長是1,AE=2,
∴=,
∴MN=1,
∴CM=MN﹣CN=1﹣=,
∴CD=2CM=1;
如圖3,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否則△EDC不符合三角形內(nèi)角和定理,
∴此時不存在EC=ED;
如圖4,
∵∠EDC<∠ABC,∠ECB>∠ACB,
又∵∠ABC=∠ACB=60°,
∴∠ECD>∠EDC,
即此時ED≠EC,
∴此時情況不存在,
答:CD的長是3或1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標為A(m,2).
(1)求m的值和一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;
(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年參觀“5.18”海交會的總?cè)藬?shù)約為489000人,將489000用科學(xué)記數(shù)法表示為( )
A.48.9×104
B.4.89×105
C.4.89×104
D.0.489×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點運動時間為t,則S關(guān)于x的函數(shù)圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),按C→B→A的路徑,以2cm每秒的速度運動,設(shè)運動時間為t秒.
(1) 當(dāng)t=1時,求△ACP的面積
(2) t為何值時,線段AP是∠CAB的平分線?
(3) 請利用備用圖2繼續(xù)探索:當(dāng)t為何值時,△ACP是以AC為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側(cè)同時施工.為了使山的另一側(cè)的開挖點C在AB的延長線上,設(shè)想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經(jīng)過),與L相交于D點,經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com