如圖,在矩形ABCD中,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,取EF的中點(diǎn)G,連接CG,BG,BD,DG,下列結(jié)論:
①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若=,則3S△BDG=13S△DGF.
其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
①③④. 解:∵AE平分∠BAD,
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,∠AEB=45°,
∵AB=CD,
∴BE=CD,
故①正確;
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF是等腰直角三角形,
∵點(diǎn)G為EF的中點(diǎn),
∴CG=EG,∠FCG=45°,
∴∠BEG=∠DCG=135°,
在△DCG和△BEG中,
,
∴△DCG≌△BEG(SAS).
∴∠BGE=∠DGC,
∵∠BGE<∠AEB,
∴∠DGC=∠BGE<45°,
∵∠CGF=90°,
∴∠DGF<135°,
故②錯誤;
∵∠BGE=∠DGC,
∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,
故③正確;
∵△DCG≌△BEG,
∵∠BGE=∠DGC,BG=DG,
∵∠EGC=90°,
∴∠BGD=90°,
∵BD==,
∴BG=DG=,
∴S△BDG=×=
∴3S△BDG=,
過G作GM⊥CF于M,
∵CE=CF=BC﹣BE=BC﹣AB=1,
∴GM=CF=,
∴S△DGF=•DF•GM==,
∴13S△DGF=,
∴3S△BDG=13S△DGF,
故④正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在“百度”搜索引擎中輸入“姚明”,能搜索到與之相關(guān)的網(wǎng)頁約27000000個,將這個數(shù)用科學(xué)記數(shù)法表示為( 。
A. 2.7×105 B. 2.7×106 C. 2.7×107 D. 2.7×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)系中,直線y=x+1與y軸交于點(diǎn)A,按如圖方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直線y=x+1上,點(diǎn)C1、C2、C3…在x軸上,圖中陰影部分三角形的面積從左導(dǎo)游依次記為S1、S2、S3、…Sn,則Sn的值為 (用含n的代數(shù)式表示,n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列說法中正確的是( 。
A. 擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
B. “對角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
C. “同位角相等”這一事件是不可能事件
D. “鈍角三角形三條高所在直線的交點(diǎn)在三角形外部”這一事件是隨機(jī)事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,動點(diǎn)P從點(diǎn)B出發(fā)以1厘米/秒的速度沿BC方向運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)以2厘米/秒的速度沿CD方向運(yùn)動,P,Q兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時停止運(yùn)動,點(diǎn)P也隨之停止,設(shè)運(yùn)動時間為t秒(t>0).
(1)求線段CD的長;
(2)t為何值時,線段PQ將四邊形ABCD的面積分為1:2兩部分?
(3)伴隨P,Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線為l.
①t為何值時,l經(jīng)過點(diǎn)C?
②求當(dāng)l經(jīng)過點(diǎn)D時t的值,并求出此時刻線段PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線交軸于點(diǎn)A(1,0),交軸于點(diǎn)B,對稱軸是=2.
(1)求拋物線的解析式.
(2)點(diǎn)P是拋物線對稱軸上的一個動點(diǎn),是否存在點(diǎn)P,使△PAB的周長最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com