【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
【答案】
(1)解:∵在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,
∴AC=DC,∠A=60°,
∴△ADC是等邊三角形,
∴∠ACD=60°,
∴n的值是60
(2)解:四邊形ACFD是菱形;
理由:∵∠DCE=∠ACB=90°,F(xiàn)是DE的中點,
∴FC=DF=FE,
∵∠CDF=∠A=60°,
∴△DFC是等邊三角形,
∴DF=DC=FC,
∵△ADC是等邊三角形,
∴AD=AC=DC,
∴AD=AC=FC=DF,
∴四邊形ACFD是菱形
【解析】(1)利用旋轉(zhuǎn)的性質(zhì)得出AC=CD,進而得出△ADC是等邊三角形,即可得出∠ACD的度數(shù);(2)利用直角三角形的性質(zhì)得出FC=DF,進而得出AD=AC=FC=DF,即可得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1>y2 . 其中說法正確的是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為數(shù)學競賽準備了若干鋼筆和筆記本(每支鋼筆的價格相同,每本筆記本的價格相同)作為競賽的獎品.若購買2支鋼筆和3本筆記本需62元,購買5支鋼筆和1本筆記本需90元.
(1)購買一支鋼筆和一本筆記本各需多少錢?
(2)若學校準備購買鋼筆和筆記本共80件獎品,并且購買的費用不超過1100元,則學校最多可以購買多少支鋼筆?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與 軸交 、 兩點,直線 與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求拋物線及直線AC的函數(shù)表達式;
(2)若P點是線段AC上的一個動點,過P點作 軸的平行線交拋物線于F點,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索:小明和小亮在研究一個數(shù)學問題:已知AB∥CD,AB和CD都不經(jīng)過點P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是 .
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列圖形,它是把一個三角形分別連接這個三角形三邊的中點,構(gòu)成4個小三角形,挖去中間的一個小三角形(如圖1);對剩下的三個小三角形再分別重復(fù)以上做法,…將這種做法繼續(xù)下去(如圖2,圖3…),則圖6中挖去三角形的個數(shù)為( )
A.121
B.362
C.364
D.729
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究: 如圖,直線的表達式為,與軸交于點,直線交軸于點,,與交于點,過點作軸于點,.
(1)求點的坐標;
(2)求直線的表達式;
(3)求的值;
(4)在軸上是否存在點,使得?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2015攀枝花)某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元.
(1)若該超市一次性購進兩種商品共80件,且恰好用去1600元,問購進甲、乙兩種商品各多少件?
(2)若該超市要使兩種商品共80件的購進費用不超過1640元,且總利潤(利潤=售價﹣進價)不少于600元.請你幫助該超市設(shè)計相應(yīng)的進貨方案,并指出使該超市利潤最大的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學重要的著作之一,奠定了中國傳統(tǒng)數(shù)學的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”
譯文:“今有正方形水池邊長為1丈,有棵蘆葦生長在它長出水面的部分為1尺.將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接.問水深,蘆葦?shù)拈L度分別是多少尺?”(備注:1丈=10尺)
如果設(shè)水深為尺,那么蘆葦長用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com