【題目】如果方程x2+px+q=0有兩個(gè)實(shí)數(shù)根x1 , x2 , 那么x1+x2=﹣p,x1x2=q,請(qǐng)根據(jù)以上結(jié)論,解決下列問(wèn)題:
(1)已知a、b是方程x2+15x+5=0的二根,則=?
(2)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.
(3)結(jié)合二元一次方程組的相關(guān)知識(shí),解決問(wèn)題:已知和是關(guān)于x,y的方程組的兩個(gè)不相等的實(shí)數(shù)解.問(wèn):是否存在實(shí)數(shù)k,使得y1y2﹣=2?若存在,求出的k值,若不存在,請(qǐng)說(shuō)明理由.
【答案】解:(1)∵a、b是方程x2+15x+5=0的二根,
∴a+b=﹣15,ab=5,
∴===43,
故答案是:43;
(2)∵a+b+c=0,abc=16,
∴a+b=﹣c,ab= ,
∴a、b是方程x2+cx+=0的解,
∴c2﹣4≥0,c2﹣≥0,
∵c是正數(shù),
∴c3﹣43≥0,c3≥43 , c≥4,
∴正數(shù)c的最小值是4.
(3)存在,當(dāng)k=﹣2時(shí), .
由x2﹣y+k=0變形得:y=x2+k,
由x﹣y=1變形得:y=x﹣1,把y=x﹣1代入y=x2+k,并整理得:x2﹣x+k+1=0,
由題意思可知,x1 , x2是方程x2﹣x+k+1=0的兩個(gè)不相等的實(shí)數(shù)根,故有:
即:
解得:k=﹣2.
【解析】(1)根據(jù)a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出的值.
(2)根據(jù)a+b+c=0,abc=16,得出a+b=﹣c,ab= , a、b是方程x2+cx+=0的解,再根據(jù)c2﹣4≥0,即可求出c的最小值.
(3)運(yùn)用根與系數(shù)的關(guān)系求出x1+x2=1,x1x2=k+1,再解y1y2﹣=2,即可求出k的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識(shí),掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根,以及對(duì)根與系數(shù)的關(guān)系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)務(wù)院辦公廳2015年3月16日發(fā)布了《中國(guó)足球改革的總體方案》,這是中國(guó)足球歷史上的重大改革.為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
獲獎(jiǎng)等次 | 頻數(shù) | 頻率 |
一等獎(jiǎng) | 10 | 0.05 |
二等獎(jiǎng) | 20 | 0.10 |
三等獎(jiǎng) | 30 | b |
優(yōu)勝獎(jiǎng) | a | 0.30 |
鼓勵(lì)獎(jiǎng) | 80 | 0.40 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= ,b= ,且補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來(lái)描述獲獎(jiǎng)分布情況,問(wèn)獲得優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)是多少?
(3)在這次競(jìng)賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級(jí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果方程x2+px+q=0的兩個(gè)根是x1、x2 , 那么x1+x2=﹣p,x1x2=q,請(qǐng)根據(jù)以上結(jié)論,解決下列問(wèn)題:
(1)已知x1、x2是方程x2+4x﹣2=0的兩個(gè)實(shí)數(shù)根,求+的值;
(2)已知方程x2+bx+c=0的兩根分別為+1、﹣1,求出b、c的值;
(3)關(guān)于x的方程x2+(m﹣1)x+m2﹣3=0的兩個(gè)實(shí)數(shù)根互為倒數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( )
A. (a-1)(a-2)=a2-3a+2 B. a2-3a+2=(a-1)(a-2)
C. (a-1)2+(a-1)=a2-a D. a2-3a+2=(a-1)2-(a-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明學(xué)完了統(tǒng)計(jì)知識(shí)后,從“中國(guó)環(huán)境保護(hù)網(wǎng)”上查詢到他所居住城市2009年全年的空氣質(zhì)量級(jí)別資料,用簡(jiǎn)單隨機(jī)抽樣的方法選取30天,并列出下表:
空氣質(zhì)量級(jí)別 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | a | 15 | 2 | 1 | 0 |
請(qǐng)你根據(jù)以上信息解答下面問(wèn)題:
(1)這次抽樣中“空氣質(zhì)量不低于良”的頻率為多少?
(2)根據(jù)這次抽樣的結(jié)果,請(qǐng)你估計(jì)2009年全年(共365天)空氣質(zhì)量為優(yōu)的天數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種服裝原價(jià)為200元,連續(xù)兩次漲價(jià)a%后,售價(jià)為242元,則a的值為( )
A.5B.10C.15D.21
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com