【題目】對于任意一個(gè)三位數(shù),將它任意兩個(gè)數(shù)位上的數(shù)字對調(diào)后得到一個(gè)首位不為0的新的三位數(shù)(可以與相同),記,在所有可能的情況中,當(dāng)最小時(shí),我們稱此時(shí)的是的“平安快樂數(shù)”,并規(guī)定.例如:318按上述方法可得新數(shù)381、813、138,因?yàn)?/span>,,,而,所以138是318的“平安快樂數(shù)”,此時(shí).
(1)168的“平安快樂數(shù)”為_______________,______________;
(2)若(,都是正整數(shù)),交換其十位與百位上的數(shù)字得到新數(shù),當(dāng)是13的倍數(shù)時(shí),求的最大值.
【答案】(1)861,-7;(2)73
【解析】
(1)根據(jù)題意,寫任意兩個(gè)數(shù)位上的數(shù)字對調(diào)后得到的所有新數(shù),然后計(jì)算每個(gè)數(shù)中|a-2b+c|的值,確定最小為“平安快樂數(shù)”,再由K(p)=a2-2b2+c2公式進(jìn)行計(jì)算便可;
(2)根據(jù)題意找出m、n,根據(jù)“1≤x≤y≤9”即可得出x、y的可能值,進(jìn)而可找出m的“平安快樂數(shù)”和K(n)的值,取其最大值即可.
解:(1)168任意兩個(gè)數(shù)位上的數(shù)字對調(diào)后得到的新三位數(shù)是618,186,861
|62×1+8|=12,|12×8+6|=9,|82×6+1|=3,
∵3<6<12
∴168的“平安快樂數(shù)”為861,
∴K(168)=82-2×62+12=-7
(2)∵m=100x+10y+8(1≤x≤y≤9,x、y都是正整數(shù)),交換其十位與百位上的數(shù)字得到新數(shù)n
∴n=100y+10x+8,
m+n=100x+10y+8+100y+10x+8
=100(x+y)+10(x+y+1)+6
=110(x+y)+16
=105(x+y)+13+5(x+y)+3
∵m+n是13的倍數(shù),又105(x+y)+13是13的倍數(shù),
∴=整數(shù);符合條件的整數(shù)只有6,
∴x+y=15,
∵1≤x≤y≤9,x、y都是正整數(shù),
∴n有可能是:878、968,
∵==30,==73,
∴的最大值為:73.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)當(dāng)t為何值時(shí),DF=DA?
(2)當(dāng)t為何值時(shí),△ADE為直角三角形?請說明理由.
(3)是否存在某一時(shí)刻t,使點(diǎn)F在線段AC的中垂線上,若存在,請求出t值,若不存在,請說明理由.
(4)請用含有t式子表示△DEF的面積,并判斷是否存在某一時(shí)刻t,使△DEF的面積是△ABC面積的,若存在,請求出t值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水晶廠生產(chǎn)的水晶工藝品非常暢銷,某網(wǎng)店專門銷售這種工藝品.成本為30元/件,每天銷售y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,當(dāng)x=40時(shí),y=300;當(dāng)x=55時(shí),y=150.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天工藝品的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該工藝品銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(10.0)及在第一象限的動(dòng)點(diǎn)P(x,y),且x+y=12,設(shè)△OPA的面積為S。
(1)求S關(guān)于x的函數(shù)解析式;
(2)求x的取值范圍;
(3)當(dāng)S=15時(shí),求P點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽某公司銷售統(tǒng)計(jì)了每個(gè)銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時(shí),為“不稱職”,當(dāng) 時(shí)為“基本稱職”,當(dāng) 時(shí)為“稱職”,當(dāng) 時(shí)為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的銷售員將獲得獎(jiǎng)勵(lì)。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎(jiǎng),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“慈善一日捐”活動(dòng)中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計(jì)圖.
(1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;
(2)求這組數(shù)據(jù)的平均數(shù);
(3)該校共有學(xué)生參與捐款,請你估計(jì)該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦了一次成語知識競賽,滿分10分,學(xué)生得分均為整數(shù),成績達(dá)到6分及6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競賽中甲、乙兩組學(xué)生成績分布的折線統(tǒng)計(jì)圖和成績統(tǒng)計(jì)分析表如圖所示.
(1)求出下列成績統(tǒng)計(jì)分析表中的值;
(2)小英同學(xué)說:“這次競賽我得了7分,在我們小組中排名屬中游略上!”觀察上面表格判斷,小英是甲、乙哪個(gè)組的學(xué)生;
(3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組,但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們的成績要好于甲組.請你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市購進(jìn)一種水果進(jìn)行銷售,購進(jìn)情況和銷售情況見下表:
項(xiàng)目 | 購進(jìn)資金 單位:元 | 進(jìn)貨價(jià) 單位:元/kg | 銷售定價(jià) 單位:元/kg | 銷售情況 | 水果重量 單位:kg |
第一次 | 6000 | m | 16 | 按定價(jià)全部售完 | 第二次是第一次的兩倍 |
第二次 | 13000 | m+1 | 16 | 按定價(jià)售出一部分后,余下的400kg按定價(jià)的7折售完 |
(1)第二次的進(jìn)貨價(jià)是多少元/kg?
(2)超市在這兩次銷售中共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,且經(jīng)過點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=-1與y軸交于點(diǎn)H.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是(1)中圖象上的點(diǎn),過點(diǎn)P作x軸的垂線與直線y=-1交于點(diǎn)M,求證:點(diǎn)M到∠OFP兩邊距離相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com