【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當點P是線段BC的中點時,求點P的坐標;
(3)在(2)的條件下,求sin∠OCB的值.
【答案】
(1)解:將點A、B代入拋物線y=﹣x2+ax+b可得,
,
解得,a=4,b=﹣3,
∴拋物線的解析式為:y=﹣x2+4x﹣3
(2)解:∵點C在y軸上,
所以C點橫坐標x=0,
∵點P是線段BC的中點,
∴點P橫坐標xP= = ,
∵點P在拋物線y=﹣x2+4x﹣3上,
∴yP= ﹣3= ,
∴點P的坐標為( , )
(3)解:∵點P的坐標為( , ),點P是線段BC的中點,
∴點C的縱坐標為2× ﹣0= ,
∴點C的坐標為(0, ),
∴BC= = ,
∴sin∠OCB= = =
【解析】(1)將點A、B代入拋物線y=﹣x2+ax+b,解得a,b可得解析式;(2)由C點橫坐標為0可得P點橫坐標,將P點橫坐標代入(1)中拋物線解析式,易得P點坐標;(3)由P點的坐標可得C點坐標,A、B、C的坐標,利用勾股定理可得BC長,利用sin∠OCB= 可得結果.
【考點精析】利用拋物線與坐標軸的交點和解直角三角形對題目進行判斷即可得到答案,需要熟知一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法).
科目:初中數學 來源: 題型:
【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點,連接AC,作CD⊥AC,且AC=2CD,過C作CE⊥BN交AD于點E,設BC長為a.
(1)求△ACD的面積(用含a的代數式表示);
(2)求點D到射線BN的距離(用含有a的代數式表示);
(3)是否存在點C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分∠BAC交邊BC于點E,經過點A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點G.
(1)求證:BC是⊙F的切線;
(2)若點A、D的坐標分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x+2交x軸于點A,交y軸于點A1 , 點A2 , A3 , …在直線l上,點B1 , B2 , B3 , …在x軸的正半軸上,若△A1OB1 , △A2B1B2 , △A3B2B3 , …,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn頂點Bn的橫坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正確的是( )
A.①③
B.②③
C.①④
D.②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次數學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內標上數字).游戲規(guī)則如下:兩人分別同時轉運甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內兩數和小于12,則李燕獲勝;若指針所指區(qū)域內兩數和等于12,則為平局;若指針所指區(qū)域內兩數和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以下說法: ①關于x的方程x+ =c+ 的解是x=c(c≠0);
②方程組 的正整數解有2組;
③已知關于x,y的方程組 ,其中﹣3≤a≤1,當a=1時,方程組的解也是方程x+y=4﹣a的解;
其中正確的有( )
A.②③
B.①②
C.①③
D.①②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com