如圖,拋物線與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
(1)求點A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo);若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.
(1)A(1,0),B(5,0),證明見解析
(2)△MDE能成為等腰直角三角形,此時點P坐標(biāo)為(,3)
(3)能。此時點P坐標(biāo)為(,)。
解析試題分析:(1)在拋物線解析式中,令y=0,解一元二次方程,可求得點A、點B的坐標(biāo)。如答圖1所示,作輔助線,構(gòu)造全等三角形△AMF≌△BME,得到點M為為Rt△EDF斜邊EF的中點,從而得到MD=ME,問題得證。
在中,令y=0,即﹣,解得x=1或x=5,
∴A(1,0),B(5,0)。
如答圖1所示,分別延長AD與EM,交于點F,
∵AD⊥PC,BE⊥PC,∴AD∥BE!唷螹AF=∠MBE。
在△AMF與△BME中,
∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,
∴△AMF≌△BME(ASA)。
∴ME=MF,即點M為Rt△EDF斜邊EF的中點。
∴MD=ME,即△MDE是等腰三角形。
(2)首先分析,若△MDE為等腰直角三角形,直角頂點只能是點M。如答圖2所示,設(shè)直線PC與對稱軸交于點N,證明△ADM≌△NEM,得到MN=AM,從而求得點N坐標(biāo)為(3,2);利用點N、點C坐標(biāo),求出直線PC的解析式;最后聯(lián)立直線PC與拋物線的解析式,求出點P的坐標(biāo)。
能。
∵,∴拋物線的對稱軸是直線x=3,M(3,0)
令x=0,得y=﹣4,∴C(0,﹣4)。
△MDE為等腰直角三角形,有3種可能的情形:
①若DE⊥EM,
由DE⊥BE,可知點E、M、B在一條直線上,而點B、M在x軸上,因此點E必然在x軸上。
由DE⊥BE,可知點E只能與點O重合,即直線PC與y軸重合,不符合題意。
故此種情況不存在。
②若DE⊥DM,與①同理可知,此種情況不存在。
③若EM⊥DM,如答圖2所示,
設(shè)直線PC與對稱軸交于點N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。
在△ADM與△NEM中,
∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,
∴△ADM≌△NEM(ASA)。∴MN=MA。
∵M(jìn)(3,0),MN=MA=2,∴N(3,2)。
設(shè)直線PC解析式為y=kx+b,
∵點N(3,2),C(0,﹣4)在拋物線上,
∴,解得。
∴直線PC解析式為y=2x﹣4。
將y=2x﹣4代入拋物線解析式得: ,解得:x=0或x=。
當(dāng)x=0時,交點為點C;當(dāng)x=時,y=2x﹣4=3。
∴P(,3)。
綜上所述,△MDE能成為等腰直角三角形,此時點P坐標(biāo)為(,3)。
(3)當(dāng)點P是拋物線在x軸下方的一個動點時,解題思路與(2)完全相同:
如答題3所示,設(shè)對稱軸與直線PC交于點N,
與(2)同理,可知若△MDE為等腰直角三角形,直角頂點只能是點M。
∵M(jìn)D⊥ME,MA⊥MN,∴∠DMN=∠EMB。
在△DMN與△EMB中,
∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,
∴△DMN≌△EMB(ASA)。∴MN=MB!郚(3,﹣2)。
設(shè)直線PC解析式為y=kx+b,
∵點N(3,﹣2),C(0,﹣4)在拋物線上,
∴,解得。
∴直線PC解析式為y=x﹣4。
將y=x﹣4代入拋物線解析式得:,解得:x=0或x=。
當(dāng)x=0時,交點為點C;當(dāng)x=時,y=x﹣4=!郟(,)。
綜上所述,△MDE能成為等腰直角三角形,此時點P坐標(biāo)為(,)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖像經(jīng)過點(0,-4),且當(dāng)x=2,有最大值—2。求該二次函數(shù)的關(guān)系式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,已知拋物線經(jīng)過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點坐標(biāo)和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某公司銷售一種進(jìn)價為20元/個的計算機(jī),其銷售量y(萬個)與銷售價格x(元/個)的變化如下表:
價格x(元/個) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個) | … | 5 | 4 | 3 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)請直接寫出點D的坐標(biāo): ;
(2)當(dāng)點P在線段AO(點P不與A、O重合)上運(yùn)動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點坐標(biāo)為.由勾股定理得,所以A、B兩點間的距離公式為.
注:上述公式對A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(1)求A、B兩點的坐標(biāo)及C點的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知拋物線y=﹣2x2﹣4x的圖象E,將其向右平移兩個單位后得到圖象F.
(1)求圖象F所表示的拋物線的解析式:
(2)設(shè)拋物線F和x軸相交于點O、點B(點B位于點O的右側(cè)),頂點為點C,點A位于y軸負(fù)半軸上,且到x軸的距離等于點C到x軸的距離的2倍,求AB所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC的頂點坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點D的坐標(biāo);
(2)求拋物線的對稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com