【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“勻稱三角形”,這條中線為“勻稱中線”.
(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.
①請(qǐng)判斷“勻稱中線”是哪條邊上的中線,
②求BC:AC:AB的值.
(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到△ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,AD與⊙O交于點(diǎn)M,若△ACD是“勻稱三角形”,求CD的長(zhǎng),并判斷CM是否為△ACD的“勻稱中線”.
【答案】(1)① “勻稱中線”是BE,它是AC邊上的中線,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“勻稱中線”.理由見(jiàn)解析.
【解析】
(1)①先作出Rt△ABC的三條中線AD、BE、CF,然后利用勻稱中線的定義分別驗(yàn)證即可得出答案;
②設(shè)AC=2a,利用勾股定理分別把BC,AB的長(zhǎng)度求出來(lái)即可得出答案.
(2)由②知:AC:AD:CD=,設(shè)AC=,則AD=2a,CD=,過(guò)點(diǎn)C作CH⊥AB,垂足為H,利用的面積建立一個(gè)關(guān)于a的方程,解方程即可求出CD的長(zhǎng)度;假設(shè)CM是△ACD的“勻稱中線”,看能否與已知的定理和推論相矛盾,如果能,則說(shuō)明假設(shè)不成立,如果不能推出矛盾,說(shuō)明假設(shè)成立.
(1)①如圖①,作Rt△ABC的三條中線AD、BE、CF,
∵∠ACB=90°,
∴CF=,即CF不是“勻稱中線”.
又在Rt△ACD中,AD>AC>BC,即AD不是“勻稱中線”.
∴“勻稱中線”是BE,它是AC邊上的中線,
②設(shè)AC=2a,則CE=a,BE=2a,
在Rt△BCE中∠BCE=90°,
∴BC=,
在Rt△ABC中,AB=,
∴BC:AC:AB=
(2)由旋轉(zhuǎn)可知,∠DAE=∠BAC=45°.AD=AB>AC,
∴∠DAC=∠DAE+∠BAC=90°,AD>AC,
∵Rt△ACD是“勻稱三角形”.
由②知:AC:AD:CD=
設(shè)AC=,則AD=2a,CD=,
如圖②,過(guò)點(diǎn)C作CH⊥AB,垂足為H,則∠AHC=90°,
∵∠BAC=45°,
∴
∵
解得a=2,a=﹣2(舍去),
∴
判斷:CM不是△ACD的“勻稱中線”.
理由:假設(shè)CM是△ACD的“勻稱中線”.
則CM=AD=2AM=4,AM=2,
∴
又在Rt△CBH中,∠CHB=90°,CH= ,BH=4-,
∴
即
這與∠AMC=∠B相矛盾,
∴假設(shè)不成立,
∴CM不是△ACD的“勻稱中線”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】非洲豬瘟疫情發(fā)生以來(lái),豬肉市場(chǎng)供應(yīng)階段性偏緊和豬價(jià)大幅波動(dòng)時(shí)有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進(jìn)轉(zhuǎn)型升級(jí),增強(qiáng)豬肉供應(yīng)保障能力,國(guó)務(wù)院辦公廳于2019年9月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級(jí)的意見(jiàn)》,某生豬飼養(yǎng)場(chǎng)積極響應(yīng)國(guó)家號(hào)召,努力提高生產(chǎn)經(jīng)營(yíng)管理水平,穩(wěn)步擴(kuò)大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場(chǎng)2019年每月生豬產(chǎn)量y(噸)與月份x(,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.
(1)請(qǐng)直接寫出當(dāng)(x為整數(shù))和(x為整數(shù))時(shí),y與x的函數(shù)關(guān)系式;
(2)若該飼養(yǎng)場(chǎng)生豬利潤(rùn)P(萬(wàn)元/噸)與月份x(,且x為整數(shù))滿足關(guān)系式:,請(qǐng)問(wèn):該飼養(yǎng)場(chǎng)哪個(gè)月的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹(shù)狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊AB在x軸正半軸上,點(diǎn)A與原點(diǎn)重合,點(diǎn)D的坐標(biāo)是 (3,4),反比例函數(shù)y=(k≠0)經(jīng)過(guò)點(diǎn)C,則k的值為( 。
A.12B.15C.20D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AC與⊙O交于點(diǎn)F,弦AD平分∠BAC,DE⊥AC,垂足為E點(diǎn).
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為2,∠BAC=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)玩轉(zhuǎn)盤游戲時(shí),把質(zhì)地相同的兩個(gè)盤A、B分別平均分成2份和3份,并在每一份內(nèi)標(biāo)有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學(xué)分別同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各1次,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)時(shí)甲勝;數(shù)字之積為奇數(shù)時(shí)乙勝.若指針恰好在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.
(1)用樹(shù)狀圖或列表的方法,求甲獲勝的概率;
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?請(qǐng)判斷并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=x2﹣x﹣2的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的圖形是函數(shù)y=|x2﹣x﹣2|的圖象,已知過(guò)點(diǎn)D(0,4)的直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個(gè)交點(diǎn),則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com