【題目】如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦MN∥BC交AB于點(diǎn)E,且ME=1,AM=2,AE=
(1)求證:BC是⊙O的切線;
(2)求 的長(zhǎng).

【答案】
(1)證明:如圖,

∵M(jìn)E=1,AM=2,AE= ,

∴ME2+AE2=AM2=4,

∴△AME是直角三角形,且∠AEM=90°.

又∵M(jìn)N∥BC,

∴∠ABC=∠AEM=90°,即OB⊥BC.

又∵OB是⊙O的半徑,

∴BC是⊙O的切線


(2)解:如圖,連接ON.

在Rt△AEM中,sinA= = ,

∴∠A=30°.

∵AB⊥MN,

= ,EN=EM=1,

∴∠BON=2∠A=60°.

在Rt△OEN中,sin∠EON= ,

∴ON= =

的長(zhǎng)度是: =


【解析】(1)欲證明BC是⊙O的切線,只需證明OB⊥BC即可;(2)首先,在Rt△AEM中,根據(jù)特殊角的三角函數(shù)值求得∠A=30°; 其次,利用圓心角、弧、弦間的關(guān)系、圓周角定理求得∠BON=2∠A=60°,由三角形函數(shù)的定義求得ON= = ;
最后,由弧長(zhǎng)公式l= 計(jì)算 的長(zhǎng).
【考點(diǎn)精析】本題主要考查了勾股定理的逆定理和切線的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)是a,寬是b的長(zhǎng)方形硬紙板的四周各剪去一個(gè)邊長(zhǎng)為c的正方形(a>b>2c).再折合成一個(gè)無(wú)蓋的長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).

(1)若a=12,b=7,c=2,求折合成的長(zhǎng)方體盒子的側(cè)面積是多少?

(2)請(qǐng)用含a,b,c的代數(shù)式表示折成的長(zhǎng)方體盒子的底面周長(zhǎng);

(3)如果把長(zhǎng)方體硬紙板的四周剪去2個(gè)邊長(zhǎng)為c的正方形和2個(gè)同樣形狀、同樣大小的長(zhǎng)方形,然后折合成一個(gè)有蓋的長(zhǎng)方體盒子,那么它的底面周長(zhǎng)是多少?(用含a,b,c的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,EDC邊上一點(diǎn),且DE=1,AE=EF,∠AEF=90°,則FC= ( )

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),OBD的中點(diǎn),PO的延長(zhǎng)線交BC于點(diǎn)Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求當(dāng)t為何值時(shí),四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩點(diǎn)在一次函數(shù)圖象上的位置如圖所示,兩點(diǎn)的坐標(biāo)分別為A(x+a,y+b),B(x,y),下列結(jié)論正確的是( )

A.a>0
B.a<0
C.b=0
D.ab<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+6于A、B兩點(diǎn),若反比例函數(shù)y= (x>0)的圖象與△ABC有公共點(diǎn),則k的取值范圍是( )

A.2≤k≤9
B.2≤k≤8
C.2≤k≤5
D.5≤k≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG,CF.下列結(jié)論:①點(diǎn)G是BC中點(diǎn);②FG=FC;③S△FGC.其中正確的是(  )

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教師節(jié)當(dāng)天,出租車司機(jī)小王在東西向的街道上免費(fèi)接送教師,規(guī)定向東為正,向西為負(fù),當(dāng)天出租車的行程如下(單位:千米):,,,,

將最后一名老師送到目的地時(shí),小王距出發(fā)地多少千米?方位如何?

若汽車耗油量為/千米,則當(dāng)天耗油多少升?若汽油價(jià)格為/升,則小王共花費(fèi)了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,CA=CB=4,ACB=120°,將一塊足夠大的直角三角尺PMN(M=90°、MPN=30°)按如圖所示放置,頂點(diǎn)P在線段AB上滑動(dòng),三角尺的直角邊PM始終經(jīng)過(guò)點(diǎn)C,并且與CB的夾角∠PCB=α,斜邊PNAC于點(diǎn)D.

(1)當(dāng)PNBC時(shí),∠ACP=_____度.

(2)在點(diǎn)P滑動(dòng)的過(guò)程中,當(dāng)AP長(zhǎng)度為多少時(shí),△ADP與△BPC全等.

(3)在點(diǎn)P的滑動(dòng)過(guò)程中,△PCD的形狀可以是等腰三角形嗎?若不可以,請(qǐng)說(shuō)明理由;若可以,請(qǐng)求出夾角α的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案