(11·十堰)如圖,AB是半圓O的直徑,點(diǎn)C為半徑OB上一點(diǎn),過點(diǎn)C作CD⊥AB交半圓O于點(diǎn)D,將△ACD沿AD折疊得到△AED,AE交半圓于點(diǎn)F,連接DF。
(1)求證:DE是半圓的切線;
(2)連接OD,當(dāng)OC=BC時(shí),判斷四邊形ODFA的形狀,并證明你的結(jié)論。
證明:(1)如圖,連接OD,

則OA=OD,∴∠OAD=∠ODA,△AED由△ACD對折得到,所以∠CDA=∠EDA,
又CD⊥AB,∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D在半圓O上,
∴DE是半圓的切線。
(2)四邊形ODFA是菱形。

在Rt△OCD中,∠ODC=30°,∴∠DOC=60°,
∵∠DOC=∠OAD+∠ODA,∴∠OAD=∠ODA=∠FAD=30°。
∴OD//AF,∠FAO=60°,又∵OF=OA,∴△FAO是等邊三角形,∴OA=AF,∴OD=AF,
∴四邊形ODFA是平行四邊形,∵OA=OD,∴四邊形ODFA是菱形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB與⊙O相切于點(diǎn)B,AO的延長線交⊙O于點(diǎn)C,連結(jié)BC.若∠A=
36°,則∠C=    ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知扇形的圓心角為,半徑為6,則扇形的弧長為        .(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011•海南)如圖,AB是⊙O的直徑,AC是⊙O的切線,A為切點(diǎn),連接BC交⊙O于點(diǎn)D,若∠C=50°,則∠AOD=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·永州)(本題滿分10分)如圖,AB是半圓O的直徑,點(diǎn)C是⊙O上一點(diǎn)
(不與A,B重合),連接AC,BC,過點(diǎn)O作OD∥AC交BC于點(diǎn)D,在OD的延長線上
取一點(diǎn)E,連接EB,使∠OEB=∠ABC.
⑴ 求證:BE是⊙O的切線;
⑵ 若OA=10,BC=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠CDB=30°,⊙O的半徑為cm,
則弦CD的長為   
A.cmB.3cm
C.cmD.9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•廣州)如圖1,⊙O中AB是直徑,C是⊙O上一點(diǎn),∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,點(diǎn)D在線段AC上.
(1)證明:B、C、E三點(diǎn)共線;
(2)若M是線段BE的中點(diǎn),N是線段AD的中點(diǎn),證明:MN=OM;
(3)將△DCE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)后,記為△D1CE1(圖2),若M1是線段BE1的中點(diǎn),N1是線段AD1的中點(diǎn),M1N1=OM1是否成立?若是,請證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,AB是半圓的直徑,點(diǎn)O是圓心,點(diǎn)C是OA的中點(diǎn),CD⊥OA交
半圓于點(diǎn)D,點(diǎn)E是的中點(diǎn),連接AE、OD,過點(diǎn)D作DP∥AE交BA的延長線于點(diǎn)P.
(1)求∠AOD的度數(shù);
(2)求證:PD是半圓O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·西寧)(本小題滿分10分)已知:如圖,BD為⊙O的直徑,ABAC,ADBCE,AE=2,ED=4.
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案