【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.

1)如圖1,在△ABC中,ABAC,AD是△ABC的角平分線,E,F分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.

2)如圖2,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長(zhǎng)交AB于點(diǎn)Q,延長(zhǎng)EFAC于點(diǎn)N.若NAC的中點(diǎn),DE2BE,QB3,求鄰余線AB的長(zhǎng).

【答案】1)詳見(jiàn)解析;(210

【解析】

1)由等腰三角形的三線合一定理先證ADBC,再證∠DAB+DBA90°,由鄰余四邊形定義即可判定;

2)由等腰三角形的三線合一定理先證BDCD,推出CE5BE,再證明DBQ∽△ECN,推出,即可求出NCAC,AB的長(zhǎng)度.

解:(1)∵ABACADABC的角平分線,

ADBC,

∴∠ADB90°

∴∠DAB+DBA90°,

∴∠FAB與∠EBA互余,

∴四邊形ABEF是鄰余四邊形;

2)∵ABACADABC的角平分線,

BDCD,

DE2BE,

BDCD3BE,

CECD+DE5BE

∵∠EDF90°,點(diǎn)MEF的中點(diǎn),

DMME,

∴∠MDE=∠MED

ABAC,

∴∠B=∠C,

∴△DBQ∽△ECN,

,

QB3,

NC5,

ANCN

AC2CN10,

ABAC10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 AB 兩點(diǎn)(點(diǎn) A 在點(diǎn) B 的左側(cè)),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 C、D 兩點(diǎn)(點(diǎn) C 在點(diǎn) D 的左側(cè)),其中 k 0, a b

(1)求證:函數(shù) y1 y2 的圖象交點(diǎn)落在一條定直線上;

(2) AB=CD,求 a、bk 滿足的關(guān)系式;

(3)是否存在函數(shù) y1 y2 ,使得 BC 為線段 AD 的三等分點(diǎn)?若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每天鍛煉一小時(shí),健康生活一輩子,學(xué)校準(zhǔn)備從小明和小亮2人中隨機(jī)選拔一人當(dāng)陽(yáng)光大課間領(lǐng)操員,體育老師設(shè)計(jì)的游戲規(guī)則是:將四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖1,撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明兩人各抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時(shí),小亮當(dāng)選;否則小明當(dāng)選.

1)請(qǐng)用樹(shù)狀圖或列表法求出所有可能的結(jié)果;

2)請(qǐng)問(wèn)這個(gè)游戲規(guī)則公平嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠BAC=90°,AB=3,AC=6,點(diǎn)D,E分別是邊BC,AC上的動(dòng)點(diǎn),則DA+DE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:關(guān)于三角函數(shù)還有如下的公式:

sin(α±β)=sinαcosβ±cosαsinβ

tan(α±β)=

利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來(lái)求值.

例:tan75°=tan(45°+30°)===

根據(jù)以上閱讀材料,請(qǐng)選擇適當(dāng)?shù)墓浇獯鹣旅鎲?wèn)題

(1)計(jì)算:sin15°;

(2)某校在開(kāi)展愛(ài)國(guó)主義教育活動(dòng)中,來(lái)到烈士紀(jì)念碑前緬懷和紀(jì)念為國(guó)捐軀的紅軍戰(zhàn)士.李三同學(xué)想用所學(xué)知識(shí)來(lái)測(cè)量如圖紀(jì)念碑的高度.已知李三站在離紀(jì)念碑底7米的C處,在D點(diǎn)測(cè)得紀(jì)念碑碑頂?shù)难鼋菫?5°,DC為米,請(qǐng)你幫助李三求出紀(jì)念碑的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是平行四邊形,對(duì)角線AC平分∠DAB,AC與BD相交于點(diǎn)O,DE⊥AB于E點(diǎn).(1)求證:四邊形ABCD是菱形;

(2)若AC=8,BD=6,求DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,ABCADE均是等腰直角三角形,直角邊ACAD在同一條直線上,點(diǎn)G、H分別是斜邊DEBC的中點(diǎn),點(diǎn)FBE的中點(diǎn),連接GF、GH

1)猜想GFGH的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;

2)現(xiàn)將圖①中的ADE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)αα90°),得到圖②,請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

3)若AD2,AC4,將圖①中的ADE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)一周,直接寫出GH的最大值和最小值,并寫出取得最值時(shí)旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案