【題目】如圖,已知四邊形ABCD中,∠C=72°,∠D=81°.沿EF折疊四邊形,使點A、B分別落在四邊形內(nèi)部的點A′、B′處,則∠1+∠2=°.

【答案】54
【解析】由題意得:∠1+∠2+∠FEA′+∠EFB′+∠D+∠C=360°,
又∵∠C=72°,∠D=81°,
∴∠FEA′+∠EFB′+∠1+∠2=207°;
又∵∠AEF+∠BFE+∠FEA′+∠EFB′+∠1+∠2=360°,四邊形A′B′FE是四邊形ABEF翻轉(zhuǎn)得到的,
∴∠FEA′+∠EFB′=∠AEF+∠BFE,
∴∠FEA′+∠EFB′=360°-207°=153°,
∴∠1+∠2=54°.
本題考查了翻轉(zhuǎn)變換及多邊形的內(nèi)角和的知識,有一定難度,找準(zhǔn)各個角的關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線y= (x>0),直線l1:y﹣ =k(x﹣ )(k<0)過定點F且與雙曲線交于A,B兩點,設(shè)A(x1 , y1),B(x2 , y2)(x1<x2),直線l2:y=﹣x+

(1)若k=﹣1,求△OAB的面積S;
(2)若AB= ,求k的值;
(3)設(shè)N(0,2 ),P在雙曲線上,M在直線l2上且PM∥x軸,問在第二象限內(nèi)是否存在一點Q,使得四邊形QMPN是周長最小的平行四邊形?若存在,請求出Q點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于點E,交BD于點H,EN∥DC交BD于點N.下列結(jié)論:
①BH=DH;②CH=(+1)EH;③ . 其中正確的是(  )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把邊長相等的正五邊形ABGHI和正六邊形ABCDEF的AB邊重合,按照如圖的方式疊合在一起,連接EB,交HI于點K,則∠BKI的大小為(  )

A.90°
B.84°
C.72°
D.88°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為( 。
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結(jié)論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案