【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.

【答案】
(1)

證明:∵點C、D、E分別是OA,OB,AB的中點,

∴DE=OC,∥OC,CE=OD,CE∥OD,

∴四邊形ODEC是平行四邊形,

∴∠OCE=∠ODE,

∵△OAP,△OBQ是等腰直角三角形,

∴∠PCO=∠QDO=90°,

∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,

∵PC= AO=OC=ED,CE=OD= OB=DQ,

在△PCE與△EDQ中, ,

∴△PCE≌△EDQ;


(2)

解:①如圖2,

連接RO,

∵PR與QR分別是OA,OB的垂直平分線,

∴AP=OR=RB,

∴∠ARC=∠ORC,∠ORQ=∠BRO,

∵∠RCO=∠RDO=90°,∠COD=150°,

∴∠CRD=30°,

∴∠ARB=60°,

∴△ARB是等邊三角形;

②由(1)得,EQ=EP,∠DEQ=∠CPE,

∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,

∴△PEQ是等腰直角三角形,

∵△ARB∽△PEQ,

∴∠ARB=∠PEQ=90°,

∴∠OCR=∠ODR=90°,∠CRD= ∠ARB=45°,

∴∠MON=135°,

此時P,O,B在一條直線上,△PAB為直角三角形,且∠APB=90°,

∴AB=2PE=2× PQ= PQ,

=


【解析】(1)根據(jù)三角形中位線的性質(zhì)得到DE=OC,∥OC,CE=OD,CE∥OD,推出四邊形ODEC是平行四邊形,于是得到∠OCE=∠ODE,根據(jù)等腰直角三角形的定義得到∠PCO=∠QDO=90°,根據(jù)等腰直角三角形的性質(zhì)得到得到PC=ED,CE=DQ,即可得到結(jié)論(2)①連接RO,由于PR與QR分別是OA,OB的垂直平分線,得到AP=OR=RB,由等腰三角形的性質(zhì)得到∠ARC=∠ORC,∠ORQ=∠BRO,根據(jù)四邊形的內(nèi)角和得到∠CRD=30°,即可得到結(jié)論;
②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,證得△PEQ是等腰直角三角形,根據(jù)相似三角形的性質(zhì)得到ARB=∠PEQ=90°,根據(jù)四邊形的內(nèi)角和得到∠MON=135°,求得∠APB=90°,根據(jù)等腰直角三角形的性質(zhì)得到結(jié)論.本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),等邊三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),熟練掌握等腰直角三角形的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一三角形的三邊長分別為5、12、13,則此三角形的內(nèi)切圓半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,∠ABC=90°,BD是∠ABC的平分線,DEAB于點E , DFBC于點F . 求證:四邊形DEBF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD∥EF,BC∥AD,AC為∠BAD的平分線,圖中與∠AOE相等(不含∠AOE)的角有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠C=72°,∠D=81°.沿EF折疊四邊形,使點A、B分別落在四邊形內(nèi)部的點A′、B′處,則∠1+∠2=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,C=90°,ABC=60°,BD平分∠ABC , 若AD=6,則CD是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的頂點B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是(
A.12
B.4
C.12-3
D.

查看答案和解析>>

同步練習(xí)冊答案