【題目】如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心, AC長(zhǎng)為半徑作⊙O,交BC于E,過(guò)O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是 的中點(diǎn);
(2)求證:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的長(zhǎng).

【答案】
(1)證明:∵AC是⊙O的直徑,

∴∠AEC=90°,

∴AE⊥BC,

∵OD∥BC,

∴AE⊥OD,

∴D是 的中點(diǎn);


(2)證明:

方法一:

如圖,延長(zhǎng)OD交AB于G,則OG∥BC,

∴∠AGD=∠B,

∵∠ADO=∠BAD+∠AGD,

又∵OA=OD,

∴∠DAO=∠ADO,

∴∠DAO=∠B+∠BAD;

方法二:

如圖,延長(zhǎng)AD交BC于H,

則∠ADO=∠AHC,

∵∠AHC=∠B+∠BAD,

∴∠ADO=∠B+∠BAD,

又∵OA=OD,

∴∠DAO=∠B+∠BAD;


(3)解:∵AO=OC,

∴SOCD= SACD

,

∵∠ACD=∠FCE,∠ADC=∠FEC=90°,

∴△ACD∽△FCE,

,

即:

∴CF=2.


【解析】(1)由AC是⊙O的直徑,即可求得OD∥BC,又由AE⊥OD,即可證得D是 的中點(diǎn);(2)首先延長(zhǎng)OD交AB于G,則OG∥BC,可得OA=OD,根據(jù)等腰三角形的性質(zhì),即可求得∠DAO=∠B+∠BAD;(3)由AO=OC,SOCD= SACD , 即可得 ,又由△ACD∽△FCE,根據(jù)相似三角形的面積比等于相似比的平方,即可求得CF的長(zhǎng).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識(shí),掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對(duì)稱軸.若一元二次方程ax2+bx+c=0的一個(gè)根x1的取值范圍是2<x1<3,則它的另一個(gè)根x2的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù) 與二次函數(shù) 在同一坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班畢業(yè)晚會(huì)設(shè)計(jì)了即興表演節(jié)目的摸球游戲,在一個(gè)不透明的盒子里裝有4個(gè)分別標(biāo)有數(shù)字1、2、3、4的乒乓球,這些球除數(shù)字外,其它完全相同.晚會(huì)上每位同學(xué)必須且只能做一次摸球游戲.游戲規(guī)則是:從盒子里隨機(jī)摸出一個(gè)球,放回?cái)噭蚝螅倜鲆粋(gè)球,若第二次摸出的球上的數(shù)字小于第一次摸出的球上的數(shù)字,就要給大家即興表演一個(gè)節(jié)目.
(1)參加晚會(huì)的同學(xué)性別比例如圖,女生有18人,則參加晚會(huì)的學(xué)生共有多少人;
(2)用列表法或樹形圖法求出晚會(huì)的某位同學(xué)即興表演節(jié)目的概率;
(3)估計(jì)本次晚會(huì)上有多少名同學(xué)即興表演節(jié)目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周長(zhǎng)為26,DE=4,則△BEC的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC=4,D為BC的中點(diǎn),在AC邊上存在一點(diǎn)E,連接ED,EB,則△BDE周長(zhǎng)的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F.切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)開展“節(jié)約用水,從我做起”活動(dòng),下表是從該小區(qū)抽取的10個(gè)家庭,8月份比7月份節(jié)約用水情況統(tǒng)計(jì):

節(jié)水量(m3

0.2

0.3

0.4

0.5

家庭數(shù)(個(gè))

1

2

3

4

那么這10個(gè)家庭8月份比7月份的節(jié)水量的平均數(shù)是(
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作⊙O,交BD于點(diǎn)E,連接CE,過(guò)D作DF⊥AB于點(diǎn)F,∠BCD=2∠ABD.
(1)求證:AB是⊙O的切線;
(2)若∠A=60°,DF= ,求⊙O的直徑BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案