【題目】市一中準(zhǔn)備組織學(xué)生及學(xué)生家長(zhǎng)到武漢大學(xué)參觀體驗(yàn),為了便于管理,所有人員到武漢必須乘坐在同一列動(dòng)車上;根據(jù)報(bào)名人數(shù),若都買 一等座單程火車票需2556元,若都買二等座單程火車票且花錢最少,則需1530元;已知學(xué)生家長(zhǎng)與教師的人數(shù)之比為2:1,安陸到武漢的動(dòng)車票價(jià)格(動(dòng) 車學(xué)生票只有二等座可以打6折)如下表所示:
(1)參加參觀體驗(yàn)的老師、家長(zhǎng)與學(xué)生各有多少人?
(2)由于各種原因,二等座火車票單程只能買x張(x小于參加參觀體驗(yàn)的人數(shù)),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請(qǐng)你設(shè)計(jì)最經(jīng)濟(jì)的購票方案,并寫出購買火車票的總費(fèi)用(單程)y與x之間的函數(shù)關(guān)系式.
(3)請(qǐng)你做一個(gè)預(yù)算,按第(2)小題中的購票方案,購買單程火車票的總費(fèi)用至少是多少錢?最多是多少錢?
【答案】
(1)
解:設(shè)參加參觀體驗(yàn)的老師有m人、學(xué)生有n人,則家長(zhǎng)有2m人,根據(jù)已知得:
,解得: .
2m=2×7=14.
答:參加參觀體驗(yàn)的老師有7人,家長(zhǎng)有14人,學(xué)生有50人
(2)
由(1)可知報(bào)名參觀體驗(yàn)的總?cè)藬?shù)為7+14+50=71(人).
二等車票只能購買x張,則一等車票購買了71﹣x張.
當(dāng)0≤x<50時(shí),y=30×0.6x+36×(71﹣x)=﹣18x+2556;
當(dāng)50≤x<71時(shí),y=30×0.6×50+30×(x﹣50)+36×(71﹣x)=﹣6x+1956.
故購買火車票的總費(fèi)用(單程)y與x之間的函數(shù)關(guān)系式為y= .
(3)
由(2)的函數(shù)關(guān)系式可知:
當(dāng)x=0時(shí),y最高,此時(shí)y=2556;
當(dāng)x=70時(shí),y最小,此時(shí)y=1536.
答:購買單程火車票的總費(fèi)用至少是1536元,最多是2556元
【解析】(1)設(shè)參加參觀體驗(yàn)的老師有m人、學(xué)生有n人,則家長(zhǎng)有2m人,結(jié)合購買火車票的費(fèi)用=單價(jià)×數(shù)量,列出關(guān)于m、n的二元一次方程組,解方程組即可得出結(jié)論(2)由動(dòng)車學(xué)生票只有二等座可以打6折,可以分兩種情況0≤x<50和50≤x<71考慮,結(jié)合購買火車票的費(fèi)用=單價(jià)×數(shù)量找出購買火車票的總費(fèi)用(單程)y與x之間的函數(shù)關(guān)系式(3)根據(jù)x的范圍,結(jié)合(2)結(jié)論中一次函數(shù)的單調(diào)性即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點(diǎn)M是 的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= k x 的圖象交于A、B兩點(diǎn),過點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)利用圖象求出不等式2x> 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式
12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測(cè)12+22+32+…+n2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長(zhǎng)交AD于F.
(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;
(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6,
(1)求函數(shù)y= 和y=kx+b的解析式.
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y= 的圖象上一點(diǎn)P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是AB的中點(diǎn),F(xiàn)是AC延長(zhǎng)線上一點(diǎn).
(1)若ED⊥EF,求證:ED=EF;
(2)在(1)的條件下,若DC的延長(zhǎng)線與FB交于點(diǎn)P,試判定四邊形ACPE是否為平行四邊形?并證明你的結(jié)論(請(qǐng)先補(bǔ)全圖形,再解答);
(3)若ED=EF,ED與EF垂直嗎?若垂直給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x的頂點(diǎn)為A,直線y=x﹣2與拋物線交于B,C兩點(diǎn).
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)作CD⊥x軸于點(diǎn)D,求證:△ODC∽△ABC;
(3)若點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,則是否還存在除C點(diǎn)外的其他位置的點(diǎn),使以O(shè),P,M為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出這樣的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com