【題目】如圖,中,,,將繞點(diǎn)按逆時針方向旋轉(zhuǎn).得到,連接交于點(diǎn)

1)求證:;

2)用表示的度數(shù);

3)若使四邊形是菱形,求的度數(shù),

【答案】1)證明見解析.(2;(3

【解析】

1)根據(jù)旋轉(zhuǎn)角求出∠BAD=CAE,然后利用“邊角邊”證明△ABD和△ACE全等.

2)根據(jù)等邊對等角和三角形內(nèi)角和定理,得出2ACE+,即可求得答案;

3)由菱形的性質(zhì),得AE=BF,AEBF,則∠ABD+BAE=180°,列出關(guān)于的等式,即可求出答案.

1)證明:繞點(diǎn)按逆時針方向旋轉(zhuǎn)

,

,

2)解:,

,

;

3)根據(jù)題意,若四邊形是菱形,

AE=BF=AB,AEBF

∴∠ABD+BAE=180°,

由(2)可知,,,

,

解得:;

∴當(dāng)時,四邊形是菱形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點(diǎn)餐逐漸成為越來越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點(diǎn)餐平臺,已知某外賣平臺的送餐費(fèi)用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機(jī)抽取80名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計,按送餐距離分類統(tǒng)計結(jié)果如下表:

送餐距離x(千米)

0x1

1x2

2x3

3x4

4x5

數(shù)量

12

20

24

16

8

1)從這80名點(diǎn)外賣的用戶中任取一名用戶,該用戶的送餐距離不超過3千米的概率為 ;

2)以這80名用戶送餐距離為樣本,同一組數(shù)據(jù)取該小組數(shù)據(jù)的中間值(例如第二小組(1x 2)的中間值是1.5),試估計利用該平臺點(diǎn)外賣用戶的平均送餐距離;

3)若該外賣平臺給送餐員的送餐費(fèi)用與送餐距離有關(guān),不超過2千米時,每份3元;超過2千米但不超4千米時,每份5元;超過4千米時,每份9元. 以給這80名用戶所需送餐費(fèi)用的平均數(shù)為依據(jù),若送餐員一天的目標(biāo)收入不低于150元,試估計一天至少要送多少份外賣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線,直線,在直線上取一點(diǎn),使,以點(diǎn)為對稱中心,作點(diǎn)的對稱點(diǎn),過點(diǎn),交軸于點(diǎn),作軸,交直線于點(diǎn),得到四邊形;再以點(diǎn)為對稱中心,作點(diǎn)的對稱點(diǎn),過點(diǎn),交軸于點(diǎn),作軸,交直線于點(diǎn),得到四邊形;;按此規(guī)律作下去,則四邊形的面積是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正方形ABCD邊上一點(diǎn),以O為圓心,OB為半徑畫圓與AD交于點(diǎn)E,過點(diǎn)E作⊙O的切線交CDF,將△DEF沿EF對折,點(diǎn)D的對稱點(diǎn)D'恰好落在⊙O上.若AB6,則OB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一邊長為的等邊游樂場,某人從邊中點(diǎn)出發(fā),先由點(diǎn)沿平行于的方向運(yùn)動到邊上的點(diǎn),再由沿平行于方向運(yùn)動到邊上的點(diǎn),又由點(diǎn)沿平行于方向運(yùn)動到邊上的點(diǎn),則此人至少要運(yùn)動_______,才能回到點(diǎn).如果此人從邊上意一點(diǎn)出發(fā),按照上面的規(guī)律運(yùn)動,則此人至少走______,就能回到起點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級畢業(yè)生統(tǒng)一參加中考實(shí)驗操作考試,根據(jù)今年的實(shí)際情況,中考實(shí)驗操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級學(xué)生,需參加實(shí)驗考試.

1)小明抽到化學(xué)實(shí)驗的概率為 ;

2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家庭過期藥品屬于“危險廢物”,處理不當(dāng)將污染環(huán)境.某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對全市家庭做一次簡單隨機(jī)抽樣調(diào)查.

1)下列選取樣本的方法最合理的一種是____________.(只需填上正確答案的序號)

①在市中心某個居民區(qū)以家庭為單位隨機(jī)抽;

②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽;

③在全市常住人口中以家庭為單位隨機(jī)抽。

經(jīng)抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:

2)填空:m=______,n=_____;

3)補(bǔ)全條形統(tǒng)計圖;

4)該市市民家庭處理過期藥品最常見的方式是 .(只填序號)

5)家庭過期藥品的正確處理方式是送回收點(diǎn),若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與坐標(biāo)軸交于A、BC三點(diǎn),其中點(diǎn)A的坐標(biāo)為(08),點(diǎn)B的坐標(biāo)為(-4,0.

1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖像上的動點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.

①求S的最大值;

②在點(diǎn)F的運(yùn)動過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖像上時,請直接寫出此時S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,4),OABC為矩形,反比例函數(shù) 的圖象過AB的中點(diǎn)D,且和BC相交于點(diǎn)EF為第一象限的點(diǎn),AF12CF13

1)求反比例函數(shù)和直線OE的函數(shù)解析式;

2)求四邊形OAFC的面積?

查看答案和解析>>

同步練習(xí)冊答案