等邊三角形的邊長(zhǎng)為4,則其面積為 .

4

【解析】

試題分析:根據(jù)三線合一的性質(zhì)根據(jù)勾股定理可以求出AD,根據(jù)AD、BC可以計(jì)算等邊△ABC的面積,即可解題.

【解析】
∵等邊三角形中中線與高線重合,

∴D為BC的中點(diǎn),故BD=BC=2,

在Rt△ABD中,AB=4,BD=2,

則AD==2,

∴等邊△ABC的面積為BC•AD=4×=4

故答案為 4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上3.1認(rèn)識(shí)不等式1(解析版) 題型:?????

數(shù)學(xué)表達(dá)式中:①﹣5<7,②3y﹣6>0,③a=6,④x﹣2x,⑤a≠2,⑥7y﹣6>5y+2中是不等式的有( )

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.8直角三角形全等的判定(解析版) 題型:填空題

如圖,∠A=∠D=90°,再添加一個(gè)條件 ,即可使Rt△ABC≌Rt△DCB,理由是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.7探索勾股定理(解析版) 題型:解答題

已知:如圖,在△ABC中,∠C=90°,∠B=30°,AC=6,點(diǎn)D在邊BC上,AD平分∠CAB,E為AC上的一個(gè)動(dòng)點(diǎn)(不與A、C重合),EF⊥AB,垂足為F.

(1)求證:AD=DB;

(2)設(shè)CE=x,BF=y,求y關(guān)于x的函數(shù)解析式;

(3)當(dāng)∠DEF=90°時(shí),求BF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.7探索勾股定理(解析版) 題型:填空題

如圖,Rt△ABC中,斜邊AB上的中線CD=5cm,AC=6cm,則BC= cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.7探索勾股定理(解析版) 題型:選擇題

已知等腰三角形的一條腰長(zhǎng)是5,底邊長(zhǎng)是6,則它底邊上的高為( )

A.5 B.3 C.4 D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.7探索勾股定理(解析版) 題型:選擇題

如下圖,△ABC中,∠C=90°,∠B=45°,AD是角平分線,DE⊥AB于E,則下列結(jié)論不正確的是( )

A.AC=AE B.CD=DE C.CD=DB D.AB=AC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.4等腰三角形的判定定理2(解析版) 題型:填空題

如圖,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延長(zhǎng)線于F,且垂足為E,則下列結(jié)論:

①AD=BF; ②BF=AF; ③AC+CD=AB,④AB=BF;⑤AD=2BE.

其中正確的結(jié)論有 .(填寫番號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015年課時(shí)同步練習(xí)(浙教版)八年級(jí)上2.4等腰三角形的判定定理1(解析版) 題型:?????

在△ABC中,已知∠A=∠B,且該三角形的一個(gè)內(nèi)角等于100°.現(xiàn)有下面四個(gè)結(jié)論:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正確結(jié)論的個(gè)數(shù)為( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案