【題目】如圖,已知直線l1l2,且l3l1、l2分別交于A、B兩點(diǎn),點(diǎn)P在直線AB上.

(1)試說(shuō)明∠1,∠2,∠3之間的關(guān)系式;(要求寫(xiě)出推理過(guò)程)

(2)如果點(diǎn)PA、B兩點(diǎn)之間(點(diǎn)PA、B不重合)運(yùn)動(dòng)時(shí),試探究∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?(只回答)

(3)如果點(diǎn)PA、B兩點(diǎn)外側(cè)(點(diǎn)PA、B不重合)運(yùn)動(dòng)時(shí),試探究∠1,∠2,∠3之間的關(guān)系.(要求寫(xiě)出推理過(guò)程)

【答案】(1)∠1+∠2=∠3,理由見(jiàn)解析;(2)同(1)可證∠1+∠2=∠3;(3)∠1-∠2=∠3或∠2-∠1=∠3,理由見(jiàn)解析

【解析】試題分析:(1)過(guò)點(diǎn)Pl1的平行線,根據(jù)平行線的性質(zhì)進(jìn)行解題;(2)(3)都是同樣的道理.

試題解析:(1)∠1+∠2=∠3;

理由:過(guò)點(diǎn)P作l1的平行線,

∵l1∥l2,

∴l(xiāng)1∥l2∥PQ,

∴∠1=∠4,∠2=∠5,(兩直線平行,內(nèi)錯(cuò)角相等)

∵∠4+∠5=∠3,

∴∠1+∠2=∠3;

(2)∠1+∠2=∠3;

理由:過(guò)點(diǎn)P作l1的平行線,

∵l1∥l2,

∴l(xiāng)1∥l2∥PQ,

∴∠1=∠4,∠2=∠5,(兩直線平行,內(nèi)錯(cuò)角相等)

∵∠4+∠5=∠3,

∴∠1+∠2=∠3;

(3)∠1-∠2=∠3或∠2-∠1=∠3,

理由:當(dāng)點(diǎn)P在下側(cè)時(shí),過(guò)點(diǎn)P作l1的平行線PQ,

∵l1∥l2

∴l(xiāng)1∥l2∥PQ,

∴∠2=∠4,∠1=∠3+∠4,(兩直線平行,內(nèi)錯(cuò)角相等)

∴∠1-∠2=∠3;

當(dāng)點(diǎn)P在上側(cè)時(shí),同理可得:∠2-∠1=∠3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某住房小區(qū)的建設(shè)中,為了提高業(yè)主的宜居環(huán)境,小區(qū)準(zhǔn)備在一個(gè)長(zhǎng)為(4a3b)米,寬為(2a3b)米的長(zhǎng)方形草坪上修建兩條寬為b米的通道.

(1)通道的面積是多少平方米?

(2)剩余草坪的面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx4k0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)yx0)的圖象交于點(diǎn)B6,b).

1b__________k__________

2)點(diǎn)C是直線AB上的動(dòng)點(diǎn)(與點(diǎn)A,B不重合),過(guò)點(diǎn)C且平行于y軸的直線l交這個(gè)反比例函數(shù)的圖象于點(diǎn)D,當(dāng)點(diǎn)C的橫坐標(biāo)為3時(shí),得OCD,現(xiàn)將OCD沿射線AB方向平移一定的距離(如圖),得到OCD,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O落在該反比例函數(shù)圖象上,求點(diǎn)O,D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(慶陽(yáng)中考)現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,某市為了了解學(xué)生的視力變化情況,從全市九年級(jí)隨機(jī)抽取了1 500名學(xué)生,統(tǒng)計(jì)了每個(gè)人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計(jì)圖,并對(duì)視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計(jì)圖.

解答下列問(wèn)題:

(1)圖中D所在扇形的圓心角度數(shù)為______;

(2)2016年全市共有30 000名九年級(jí)學(xué)生,請(qǐng)你估計(jì)視力在4.9以下的學(xué)生約有多少名?

(3)根據(jù)扇形統(tǒng)計(jì)圖信息,你覺(jué)得中學(xué)生應(yīng)該如何保護(hù)視力?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)前夕,小東的父母準(zhǔn)備購(gòu)買(mǎi)若干個(gè)粽子和咸鴨蛋(每個(gè)粽子的價(jià)格相同每個(gè)咸鴨蛋的價(jià)格相同).已知粽子的價(jià)格比咸鴨蛋的價(jià)格貴1.8,30元購(gòu)買(mǎi)粽子的個(gè)數(shù)與花12元購(gòu)買(mǎi)咸鴨蛋的個(gè)數(shù)相同求粽子與咸鴨蛋的價(jià)格各多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A=15°,AB=BC=CD=DE=EF,則DEF等于( )

A.90° B.75° C.70° D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D、F、E、G都在△ABC的邊上,EF∥AD∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請(qǐng)?jiān)谙旅娴目崭裉幪顚?xiě)理由或數(shù)學(xué)式)

解:∵EF∥AD,(已知)

∴∠2=      

∵∠1=∠2,(已知)

∴∠1=   (等量代換)

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))

∵∠CAB=70° ,(已知)

∴∠AGD=   (等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點(diǎn)坐標(biāo);

(2)如圖過(guò)C點(diǎn)作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點(diǎn)A在Y軸上運(yùn)動(dòng),以O(shè)A為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問(wèn)A點(diǎn)在運(yùn)動(dòng)過(guò)程中SAOB:SAEF的值是否會(huì)發(fā)生變化?如果沒(méi)有變化,請(qǐng)直接寫(xiě)出它們的比值   (不需要解答過(guò)程或說(shuō)明理由).

查看答案和解析>>

同步練習(xí)冊(cè)答案