14.已知二次函數(shù)的圖象經(jīng)過點A(-2,4),B(4,4),且函數(shù)有最大值13,求這個二次函數(shù)的解析式.

分析 已知A(-2,4),B(4,4),的縱坐標相同,因而這兩點一定關(guān)于對稱軸對稱,則對稱軸是x=1,最大值為13,則拋物線的頂點坐標是(1,13),因而可以設(shè)解析式是y=a(x-1)2+13,又由于函數(shù)經(jīng)過點(-2,4),代入就可以求出解析式.

解答 解:對稱軸是x=1,頂點是(1,13),
設(shè)解析式是y=a(x-1)2+13,
根據(jù)題意得:9a+13=4,解得a=-1.
故解析式是:y=-(x-1)2+13,即y=-x2+2x+12.

點評 此題考查了待定系數(shù)法求二次函數(shù)解析式,函數(shù)求解析式的方法是待定系數(shù)法,當(dāng)已知函數(shù)的頂點時,利用頂點式比較簡單,當(dāng)已知函數(shù)經(jīng)過三點,已知函數(shù)經(jīng)過的三點的坐標時,利用一般式比較簡單.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,AB=AD+BC.求證:BE⊥AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如果方程6x+3a=22與方程3x+5=11的解互為相反數(shù),那么a=( 。
A.-$\frac{34}{3}$B.$\frac{10}{3}$C.$\frac{34}{3}$D.-$\frac{10}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,點B、C、D都在半徑為12的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.解方程
(1)2(x+8)=3(x-1)
(2)4x+3(2x-3)=12-(x+4)
(3)$\frac{1}{2}$x-6=$\frac{3}{4}$x            
(4)3x+$\frac{x-1}{2}$=3-$\frac{2x-1}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線交x軸于A(-1,0),交y軸于B(0,-3),且它的對稱軸為直線x=1,求拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.先化簡,再求值:(2x+1)(2x-1)-(x-2)2-3x2,其中x=-$\frac{1}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.某商場對今年中秋節(jié)這天銷售A、B、C三種品牌的月餅情況進行了統(tǒng)計,繪制了如圖所示的條形和扇形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

(1)哪一種品牌月餅的銷售量最大?
(2)寫出A品牌月餅在扇形統(tǒng)計圖所對應(yīng)的圓心角的度數(shù).
(3)根據(jù)上述統(tǒng)計信息,明年中秋節(jié)期間該商場對A、B、C三種品牌的月餅如何進貨?請你提一條合理化的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB為⊙O直徑,D為BC弧的中點,DE⊥AC于E,
(1)求證:DE為⊙O的切線;
(2)已知:CE=2,DE=4,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案