【題目】如圖,在菱形ABCD中,BE⊥CD于點E,DF⊥BC于點F.
(1)求證:BF=DE;
(2)分別延長BE和AD,交于點G,若∠A=45°,求的值.
【答案】(1)詳見解析;(2)﹣1
【解析】
(1)根據(jù)菱形的性質(zhì)得到CB=CD,根據(jù)全等三角形的性質(zhì)得到結(jié)論;
(2)根據(jù)菱形的性質(zhì)得到∠C=∠A=45°,AG∥BC,推出△DEG與△BEC是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.
(1)證明:∵四邊形ABCD是菱形,
∴CB=CD,
∵BE⊥CD于點E,DF⊥BC于點F,
∴∠BEC=∠DFC=90°,
∵∠C=∠C,
∴△BEC≌△DFC(AAS),
∴EC=FC,
∴BF=DE;
(2)解:∵∠A=45°,四邊形ABCD是菱形,
∴∠C=∠A=45°,AG∥BC,
∴∠CBG=∠G=45°,
∴△DEG與△BEC是等腰直角三角形,
設(shè)BE=CE=a,
∴BC=AD=a,
∵∠A=∠G=45°,
∴AB=BC,∠ABG=90°,
∴AG=2a,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為1,的三個頂點均在小正方形的頂點上.
(1)在圖1中畫一個(點在小正方形的頂點上),使的周長等于的周長,且以、、、為頂點的四邊形是軸對稱圖形;
(2)在圖2中畫(點在小正方形的頂點上),使的周長等于的周長,且以、、、為頂點的四邊形是中心對稱圖形;
(3)直接寫出圖2中四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)請在圖①的的邊上求作一點,使最短;
(2)如圖②,點為內(nèi)部一點,且滿足.求證:點到點、、的距離之和最短,即最短;
問題解決
(3)如圖③,某高校有一塊邊長為400米的正方形草坪,現(xiàn)準備在草坪內(nèi)放置一對石凳及垃圾箱在點處,使點到、、三點的距離之和最小,那么是否存在符合條件的點?若存在,請作出點的位置,并求出這個最短距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角∠AOB,如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;(2)分別以點C,D為圓心,CD長為半徑作弧,兩弧交于點P,連接CP,DP;(3)作射線OP交CD于點Q.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( 。
A.CP∥OBB.CP=2QCC.∠AOP=∠BOPD.CD⊥OP
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橫、縱坐標都是整數(shù)的點叫做整點.直線y=ax與拋物線y=ax2﹣2ax﹣1(a≠0)圍成的封閉區(qū)域(不包含邊界)為W.
(1)求拋物線頂點坐標(用含a的式子表示);
(2)當a=時,寫出區(qū)域W內(nèi)的所有整點坐標;
(3)若區(qū)域W內(nèi)有3個整點,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在推進城鄉(xiāng)生活垃圾分類的行動中,為了了解社區(qū)居民對垃圾分類知識的掌握情況,某社區(qū)隨機抽取40名居民進行測試,并對他們的得分數(shù)據(jù)進行收集、整理、描述和分析.下面給出了部分信息:
a.社區(qū)40名居民得分的頻數(shù)分布直方圖:(數(shù)據(jù)分成5組:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):
b.社區(qū)居民得分在80≤x<90這一組的是:
80 80 81 82 83 84 84 85 85 85 86 86 87 89
c.40個社區(qū)居民的年齡和垃圾分類知識得分情況統(tǒng)計圖:
d.社區(qū)居民甲的垃圾分類知識得分為89分.
根據(jù)以上信息,回答下列問題:
(1)社區(qū)居民甲的得分在抽取的40名居民得分中從高到低排名第 ;
(2)在垃圾分類得分比居民甲得分高的居民中,居民年齡最大約是 歲;
(3)下列推斷合理的是 .
①相比于點A所代表的社區(qū)居民,居民甲的得分略高一些,說明青年人比老年人垃圾分類知識掌握得更好一些;
②垃圾分類知識得分在90分以上的社區(qū)居民年齡主要集中在15歲到35歲之間,說明青年人垃圾分類知識掌握更為全面,他們可以向身邊的老年人多宣傳垃圾分類知識.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點在射線上,點是射線上的一個動點(不與點重合).點關(guān)于的對稱點為點,連接、和,點在直線上,且滿足.小明在探究圖形運動的過程中發(fā)現(xiàn):始終成立.
(1)如圖1,當時;
①求證:;
②用等式表示線段、與之間的數(shù)量關(guān)系,并證明;
(2)當時,直接用等式表示線段、與之間的數(shù)量關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD內(nèi)一動點,滿足∠AEB=90°且∠BAE<45°,過點D作DF⊥BE交BE的延長線于點F.
(1)依題意補全圖形;
(2)用等式表示線段EF,DF,BE之間的數(shù)量關(guān)系,并證明;
(3)連接CE,若AB=2,請直接寫出線段CE長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com