20.計算:72÷(-2)3+(-$\frac{1}{4}$)2×32-(-3)×4.

分析 原式先計算乘方運算,再計算乘除運算,最后算加減運算即可得到結(jié)果.

解答 解:原式=72÷(-8)+$\frac{1}{16}$×32+12
=-9+2+12
=5.

點評 此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,l1∥l2∥l3,直線a,b與l1,l2,l3分別相交于點A、B、C和點D、E、F,若$\frac{AB}{BC}$=$\frac{2}{3}$,DE=4,則DF的長是( 。
A.$\frac{20}{3}$B.$\frac{8}{3}$C.10D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)學(xué)活動:求重疊部分的面積
(1)問題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積是$\sqrt{3}$.
(2)探究1:在(1)的條件下,將紙片繞P點旋轉(zhuǎn)至如圖2所示位置,紙片兩邊分別與AC,AB交于點E,F(xiàn),求圖②中重疊部分的面積與圖①中重疊部分的面積是否相等,請給予證明:如果不相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分線交BC于D,DE⊥AB,且DE:DB=3:5,則DB的長為25.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.下列調(diào)查適合抽樣調(diào)查的是( 。
A.對某社區(qū)的衛(wèi)生死角進(jìn)行調(diào)查
B.對七年級(1)班40名同學(xué)的身高情況進(jìn)行調(diào)查
C.審核書稿中的錯別字
D.對中學(xué)生目前的睡眠情況進(jìn)行調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.某校積極開展“陽光體育”活動,共開設(shè)了跳繩、足球、籃球、跑步四種運動項目,為了解學(xué)生最喜愛哪一種項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如圖的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
(1)求本次調(diào)查學(xué)生的人數(shù);
(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)計算扇形統(tǒng)計圖中籃球項目對應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,直線AB、CD相交于點O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);
(2)若OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°.
①則∠EOF=$\frac{1}{2}x$.(用含x的代數(shù)式表示)
②求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩車站相距96千米,快車、慢車同時從甲站開出,快車比慢車早40分鐘到乙站,已知快車每小時比慢車多走12千米,求快車、慢車速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系中,點A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上的一動點,連結(jié)OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸.直線OB于點E、F,點E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時,求弧AB的長;
(2)當(dāng)DE=8時,求過點O、A、F的拋物線的解析式;
(3)在點B運動過程中,點E在線段OA上時,是否存在以點E、C、F為頂點的三角形與△AOB相似?若存在,請求出此時點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案