【題目】把下面的說理過程補(bǔ)充完整:
已知:如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的關(guān)系,并說明理由.
解:∠AED=∠C.
理由:∵∠1+∠ADG=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠ADG.(_____________)
∴EF∥AB(______________).
∴∠3=∠AED(_____________).
∵∠3=∠B(已知),
∴∠B=________(________________)
∴DE∥BC(__________________).
∴∠AED=∠C(_________________).
【答案】見解析.
解:∠=∠.
理由:∵∠1+∠=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠.(同角的補(bǔ)角相等)
∴∥(同位角相等,兩直線平行).
∴∠3=∠(兩直線平行,內(nèi)錯角相等).
∵∠3=∠(已知),
∴∠=()(等量代換)
∴∥(同位角相等,兩直線平行).
∴∠=∠(兩直線平行,同位角相等).
【解析】分析:本題只要根據(jù)平行線的性質(zhì)與判定定理即可得出答案.
詳解:解:∠=∠.
理由:∵∠1+∠=180°(平角定義),∠1+∠2=180°(已知),
∴∠2=∠.(同角的補(bǔ)角相等) ∴∥(同位角相等,兩直線平行).
∴∠3=∠(兩直線平行,內(nèi)錯角相等). ∵∠3=∠(已知),
∴∠=()(等量代換) ∴∥(同位角相等,兩直線平行).
∴∠=∠(兩直線平行,同位角相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用36萬元購進(jìn)、兩種商品,銷售完后共獲利6萬元,其進(jìn)價和售價如表.
(1)該商場購進(jìn)、兩種商品各多少件?
(2)商場第二次以原進(jìn)價購進(jìn)、兩種商品.購進(jìn)種商品的件數(shù)不變,而購進(jìn)種商品的件數(shù)是第一次的2倍,種商品按原售價出售,而種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于81600元,種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù),如, , ,…任何一個單位分?jǐn)?shù)都可以拆分成兩個不同的單位分?jǐn)?shù)的和,如, , ,…
(1)根據(jù)對上述式子的觀察,你會發(fā)現(xiàn),則a=________,b=________;
(2)進(jìn)一步思考,單位分?jǐn)?shù)(n是不小于2的正整數(shù)),則x=________(用n的代數(shù)式表示)
(3)計算: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商行計劃購進(jìn)A、B兩種水果共200箱,這兩種水果的進(jìn)價、售價如下表所示:
價格 | 進(jìn)價(元/箱) | 售價(元/箱) |
A | 60 | 70 |
B | 40 | 55 |
(1)若該商行進(jìn)貸款為1萬元,則兩種水果各購進(jìn)多少箱?
(2)若商行規(guī)定A種水果進(jìn)貨箱數(shù)不低于B種水果進(jìn)貨箱數(shù)的 ,應(yīng)怎樣進(jìn)貨才能使這批水果售完后商行獲利最多?此時利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市2009年元旦的最高氣溫為12℃,最低氣溫為-2℃,那么這天的最高氣溫比最低氣溫高 ( )
A.-14℃B.-10℃C.14℃D.10℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,試說明:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E在DM上,且BE平分∠DBC,試說明∠ABE=∠AEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題: 學(xué)習(xí)了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2 =(1+)2, 我們來進(jìn)行以下的探索:
設(shè)a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m+2n2 , b=2mn, 這樣就得出了把類似a+b的式子化為平方式的方法.
請仿照上述方法探索并解決下列問題:
(1)當(dāng)a,b,m,n都為正整數(shù)時,若a﹣b=(m﹣n)2 , 用含m,n的式子分別表示a,b,得a=________,b=________;
(2)利用上述方法,找一組正整數(shù)a,b,m,n填空:___﹣_____=(____﹣_____)2
(3)a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖4所示,所有正方形的中心均在坐標(biāo)原點(diǎn),且每條邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點(diǎn)依次用…表示,則頂點(diǎn)A55的坐標(biāo)是( ).
A. (13,13) B. (-13,-13) C. (14,14) D. (-14,-14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線p:y=ax2+bx+c的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過點(diǎn)C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com